Покоренная плазма

Борис Фомин
100
10
(1 голос)
0 0

Аннотация: Есть ли что-либо общее между гигантским шаром Солнца и электрической искоркой, проскочившей в выключателе? Между молнией и ртутной лампой? Между северным сиянием и светящимися трубками реклам? Оказывается, есть. И Солнце, и молния, и светящиеся трубки, и северное сияние — все это плазма, четвертое состояние вещества. В книге «Покоренная плазма» в доступной форме рассказано о плазме, встречающейся в природе и созданной человеком, об ученых, покоряющих плазму, о том, как и где применяется плазма в науке, технике, медицине, в быту. Юный читатель узнает из книги, что важнейшие проблемы современной науки — управляемые термоядерные реакции, непосредственное преобразование тепла в ток, квантовые генераторы, создающие лучи невиданной мощности, — решаются на основе использования плазмы.

Книга добавлена:
1-03-2023, 00:43
0
341
71
Покоренная плазма
Содержание

Читать книгу "Покоренная плазма"



Опыты профессора Фабриканта

Еще в 1939 году советский ученый профессор Валентин Александрович Фабрикант поставил перед собой цель — обнаружить на опыте вынужденное излучение атомов. Сделать это было не просто, и вот почему.

Возбужденные атомы в нагретом теле излучают фотоны одни самопроизвольно, другие — под действием фотонов, вынужденно. Фотоны, возникшие в обоих случаях, немедленно поглощаются нормальными атомами, потом снова излучаются и т. д. Следовательно, у атомов вещества постоянно меняется величина энергии: у возбужденных атомов она больше, у нормальных — меньше. Физики говорят, что нормальный атом находится на первом, основном, уровне энергии, возбужденный — на более высоком. Переходы с нижнего на верхний или возвращение на основной уровень происходят скачками. При этом атом либо поглощает фотон, либо его излучает.

Атомов невозбужденных, то есть находящихся на первом уровне, в нагретом теле больше всего, поэтому они охотно поглощают все появляющиеся фотоны. При этом, как утверждал еще Эйнштейн, существует равновесие: число поглощенных фотонов равно числу излученных. Иными словами, число подъемов атомов на верхние уровни равно числу их спусков. Вынужденное излучение — это лишь один из путей спуска атомов на нижний уровень, следовательно, оно всегда будет меньше поглощения. А раз так, то и выделить вынужденное излучение невозможно.

Но профессор В. А. Фабрикант решил обойти запрет, наложенный природой. Он решил создать такую среду, в которой атомов на верхних уровнях было бы значительно больше, чем на нижних. Что это давало? В этом случае число спусков могло преобладать над числом подъемов. Атомов, стреляющих фотонами, оказывалось больше, чем атомов, поглощающих их, и это позволило бы вынужденному излучению вырваться из этой среды. Профессор прекрасно понимал, что нужна была такая среда, в которой атомы интенсивно возбуждались, то есть подбрасывались на верхний уровень и не так быстро соскальзывали вниз. Тогда ворвавшийся в среду фотон мог начать вынужденное излучение, которое, разрастаясь подобно лавине, покинуло бы среду и попало в оптические приборы.

Наиболее подходящей средой для опыта, проведенного уже после войны, оказалась плазма. Была изготовлена разрядная трубка, в которую заперли пары ртути в смеси с гелием или водородом. Когда в такой смеси зажигался разряд, то атомы возбуждались как за счет соударений с электронами, так и благодаря поглощению фотонов. Самопроизвольные переходы на нижние уровни при этом уже не уравновешивали подъемы. Большое значение имели и столкновения молекул ртути с атомами примеси. Одним словом, верхний этаж оказывался более заселенным, чем нижний. Когда в такую среду, которую назвали активной, впускали свет, то его фотоны заставляли атомы скатываться на более низкий уровень, то есть вызывали вынужденное излучение. Это излучение прибавлялось к впущенному в среду свету, и после нее он оказывался значительно ярче, сильнее. Плазма не поглощала свет, а усиливала его. Усиливала за счет вынужденного излучения.

Нужно отметить, что не любой свет может вызвать вынужденное излучение. На возбужденный атом должен налетать лишь такой фотон, который данный атом может испустить. На фотоны другого «сорта» возбужденный атом не реагирует. Следовательно, при вынужденном излучении появляются фотоны-близнецы, у которых частота, а следовательно, и энергия, а также другие свойства совершенно одинаковы. Поток таких фотонов и есть когерентный свет.

На первых порах принцип усиления света, открытый профессором В. А. Фабрикантом, нашел применение… в радиотехнике. Это неудивительно, по тому что как свет, так и радиоволны есть электромагнитные колебания, отличающиеся лишь частотой.

В усилителях радиоволн, которые назвали молекулярными, очень слабый радиосигнал попадал в специальную камеру — резонатор. В ней находилось огромное количество возбужденных молекул аммиака. Под действием пришедшей волны происходило лавинообразное сбрасывание молекул аммиака с верхнего уровня. При этом молекулы сами испускали радиоволны, благодаря чему принятый сигнал усиливался во много раз.

Такой усилитель радиоволн можно превратить в генератор, в котором радиоволны возникают самостоятельно, без вмешательства внешнего сигнала. Для этого нужно лишь увеличить приток возбужденных молекул аммиака в резонатор. Такой генератор дает строго постоянную частоту колебаний, что требуется в целом ряде радиотехнических устройств.

Молекулярные усилители и генераторы радиоволн, едва появившись, стали применяться для усиления слабых радиосигналов, приходящих на Землю из космоса, для создания эталонов времени — часов, которые никогда не отстают и не убегают вперед, а также для различных научных исследований. Советские физики Н. Г. Басов и А. М. Прохоров, разработавшие их, были удостоены звания лауреатов Ленинской премии.

И все же вынужденное излучение, так удачно использованное в радиотехнике, еще не раскрыло всех своих возможностей. Многие ученые, в том числе и сам профессор Фабрикант, верили, что вынужденное излучение можно с практической пользой применить и для световых волн. Уж очень заманчивыми казались его свойства, особенно направленность излучения, которая дает возможность получить не веер световых лучей, а острый их пучок. А раз так, то луч света можно сделать мощным, таким, как у гиперболоида инженера Гарина в научно-фантастическом романе Алексея Толстого.


Скачать книгу "Покоренная плазма" - Борис Фомин бесплатно


100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Физика » Покоренная плазма
Внимание