Покоренная плазма

Борис Фомин
100
10
(1 голос)
0 0

Аннотация: Есть ли что-либо общее между гигантским шаром Солнца и электрической искоркой, проскочившей в выключателе? Между молнией и ртутной лампой? Между северным сиянием и светящимися трубками реклам? Оказывается, есть. И Солнце, и молния, и светящиеся трубки, и северное сияние — все это плазма, четвертое состояние вещества. В книге «Покоренная плазма» в доступной форме рассказано о плазме, встречающейся в природе и созданной человеком, об ученых, покоряющих плазму, о том, как и где применяется плазма в науке, технике, медицине, в быту. Юный читатель узнает из книги, что важнейшие проблемы современной науки — управляемые термоядерные реакции, непосредственное преобразование тепла в ток, квантовые генераторы, создающие лучи невиданной мощности, — решаются на основе использования плазмы.

Книга добавлена:
1-03-2023, 00:43
0
346
71
Покоренная плазма
Содержание

Читать книгу "Покоренная плазма"



Лазер — гиперболоид наших дней

Вспомним, как в романе Алексея Толстого инженер Гарин решил поставленную им техническую задачу при создании своего гиперболоида.

Двенадцать угольных пирамидок, горящих в фарфоровых чашечках, бросали свой свет на зеркало, выполненное в виде гиперболоида. Отразившись от зеркала, лучи собирались в фокусе, в котором помещалось второе гиперболическое зеркало из тугоплавкого минерала — шамонита. Это небольшое зеркало посылало лучи, строго параллельно. Именно такой луч мог резать, разрушать здания, крепости, дредноуты, скалы.

Позднее, обосновавшись на острове, Гарин для бурения земной коры использовал двенадцать гиперболоидов, в которых световая энергия создавалась электрическими дугами, зажженными между тугоплавкими электродами.

«Весь секрет в том, чтобы послать нерассеивающийся луч», — так один из персонажей романа профессор Хлынов сформулировал задачу, стоящую перед создателем подобного аппарата.

Потребовалось несколько десятилетий, пока физики сумели на деле создать прибор, подобный тому, который действовал в романе писателя-фантаста. Только главное слово здесь было сказано не оптикой, а квантовой механикой — наукой, изучающей жизнь и поведение мельчайших обитателей микромира.

Новые удивительные приборы, созданные физиками несколько лет назад, называют квантовыми усилителями или генераторами света. Привилось и более короткое их название — лазеры. Слово это составлено из начальных букв английской фразы, которая на русский язык переводится так: «Усиление света за счет создания стимулированного излучения». Здесь «стимулированное излучение» — то же самое, что выше было вложено в понятие «вынужденное излучение». Значит, в лазерах мощный поток света создается за счет вынужденного излучения атомов, находящихся на верхних энергетических уровнях.

Как был устроен и как работал первый лазер, созданный физиками?

Сердце лазера — это красноватый стержень из рубина. Кристалл этот известен давно. Рубин — окись алюминия с примесью хрома. Чем больше в нем хрома, тем гуще, краснее его окраска. Наиболее подходящими оказались рубиновые стержни, в которых примесь хрома составляла 0,05 процента.

Вынужденное излучение в рубине создают атомы хрома. Как это происходит?

Чтобы возникло вынужденное излучение, нужно, как вы уже знаете, создать активную среду, в которой большинство атомов хрома оказалось возбужденными. Очевидно, для этого нужна энергия. В опытах профессора В. А. Фабриканта использовалась энергия движущихся зарядов, здесь — световая энергия. Рубиновый стержень помещен внутрь спирали импульсной ксеноновой лампы. Она похожа на лампу фотовспышки, только имеет значительно большую мощность.

К электродам спиральной лампы — ее называют лампой накачки — тянутся провода от батареи конденсаторов. Включив высоковольтный выпрямитель, заряжают батарею до нескольких тысяч вольт, и это напряжение подается на электроды лампы накачки. Но разряд внутри нее пока не наступает. Его нужно поджечь. Для этого от небольшого трансформатора подают высоковольтный импульс. Как и в фотовспышке, этот импульс попадает на поджигающий электрод — пластинку, расположенную рядом со спиральной лампой. Импульс ионизирует газ в лампе, и теперь батарея конденсаторов разряжается через лампу. Сотые доли секунды живет плазма в спиральной лампе, но за это время лампа испускает мощный поток света.

К сожалению, не все лучи импульсной лампы полезны для лазера. Нужны только зеленые. Поглощая фотоны этого света, атомы хрома возбуждаются и с первого попадают на третий уровень. Однако здесь они долго не задерживаются. Отдав небольшую часть энергии соседним атомам кристалла, причем, эта энергия идет на нагрев, они оказываются на более низком, втором уровне. В этом состоянии они могут находиться сравнительно долго — почти три тысячных доли секунды.

Цель световой накачки в том и состоит, чтобы побольше атомов оказалось на втором уровне. Если мощность спиральной лампы велика, то это сделать удается: второй уровень оказывается более заселенным, чем первый, иными словами, возбужденных атомов будет значительно больше, чем не возбужденных.

А дальше происходит следующее. Предположим, какой-либо атом хрома самопроизвольно «сорвался» со второго уровня. Значит, он испустил фотон. Пролетая мимо соседнего возбужденного атома, этот фотон вынудит и того «выстрелить» фотоном. Эти два фотона «высветят» еще два — получится уже четыре фотона, потом восемь, потом шестнадцать и т. д. Получается фотонная лавина — вынужденное излучение атомов хрома.

Чтобы это излучение получилось мощным, нужно, очевидно, увеличить путь луча внутри стержня. Значит, нужно брать более длинные стержни? Нет, в лазерах обычно ставят рубиновые стержни длиной от пяти до тридцати сантиметров, а путь луча увеличивают при помощи зеркал. Торцы стержня шлифуются и покрываются тонким слоем серебра. Наткнувшись на такое серебряное зеркало, фотонная лавина отражается и на обратном пути присоединяет к себе излучение новых возбужденных атомов хрома. То же самое происходит, когда она встретится с противоположным зеркалом. Так и мечутся лучи внутри рубинового стержня, все больше и больше наращивая свою мощь.

Вы можете спросить, что будет, если фотонная лавина движется не вдоль оси стержня, а под углом? Ведь она, отразившись от одного зеркала, не попадет на второе! Да, такое тоже случается. В стержне может возникнуть несколько фотонных лавин, но усиливаться будет только та из них, которая падает строго перпендикулярно к зеркалам, остальные лавины и излучения отдельных атомов просто покинут рубиновый стержень. Но это не страшно: в каждом кубическом сантиметре рубина содержится более миллиарда миллиардов атомов хрома. И даже если они не все возбуждены, нужной нам фотонной лавине развернуться есть где.

Как же луч света выводится из рубинового стержня наружу? Довольно просто: одно из зеркал делается полупрозрачным. Столкнувшись с ним, лавина фотонов отражается обратно не вся, часть лучей прорывается через зеркало и выходит наружу. Это и есть полезное излучение лазера.

Теперь посмотрим, какого цвета будут лучи, испускаемые лазером. Зеленые? Ведь атомы хрома, возбуждаясь, поглотили из света накачки именно такие лучи! Значит, и отдать они должны точно такой же свет. Это было бы так, если бы атомы, излучая, спускались с третьего уровня, куда их забросили при накачке. На самом же деле вынужденное излучение возникает, когда атомы оказываются на более низком, втором уровне. Значит, становясь нормальными, попадая на первый уровень, они должны испускать фотоны меньшей энергии, чем у фотонов зеленого света. Так оно и получается в действительности: свет лазера красный, длина его волны 0,6943 микрона.

Лазер — это генератор света. Питаясь зелеными лучами лампы накачки, он создает красные лучи — лучи когерентного света, обладающие большой направленностью. Если луч лазера направить на Луну, то он создаст на ее поверхности пятно диаметром всего в 2 километра. Чтобы получить такой же эффект обычным способом, например, при помощи параболического отражателя, нужно взять зеркало диаметром в 150 метров!

Но, кроме острой направленности излучения, у лазера есть еще одно важное преимущество — большая мощность луча.

Рубиновый лазер работает, как правило, отдельными вспышками. Они очень коротки — тысячные доли секунды. Чтобы определить мощность вспышки, нужно энергию световой вспышки в джоулях разделить на длительность вспышки в секундах. Известная формула из школьного курса физики. Как вы, наверно, помните, мощность получается в ваттах.

Теперь обратимся к цифрам. Недавно в печати было опубликовано сообщение, что создан лазер с выходной энергией в 350 джоулей. Вроде бы не очень много. Но он эту энергию «выплескивает» за 0,0005 секунды. Значит, луч имеет мощность в 70 киловатт! А ведь первые лазеры имели мощность в единицы киловатт.

В физических лабораториях идет постоянная борьба за мощность светового луча. Ученые нацелились уже на миллионы ватт, или мегаватты. Лазеры с такой мощностью созданы.

Я рассказал о работе рубинового лазера. В нем главные события происходят в кристалле — в твердом теле. Но и такой лазер без плазмы обойтись не может: накачка в нем осуществляется плазменной импульсной лампой. Неужели роль плазмы в этих удивительных приборах этим только и ограничивается? Конечно, нет.

Прошло еще очень немного времени после появления рубиновых лазеров, как стало известно, что разработан лазер нового типа. Этот собрат совсем не был похож на своего предшественника: у него не было ни стержня-кристалла, ни лампы накачки. И работал он не отдельными вспышками, а непрерывно испускал когерентный направленный свет.

Что это был за прибор? Давайте посмотрим.


Скачать книгу "Покоренная плазма" - Борис Фомин бесплатно


100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Физика » Покоренная плазма
Внимание