Покоренная плазма

Борис Фомин
100
10
(1 голос)
0 0

Аннотация: Есть ли что-либо общее между гигантским шаром Солнца и электрической искоркой, проскочившей в выключателе? Между молнией и ртутной лампой? Между северным сиянием и светящимися трубками реклам? Оказывается, есть. И Солнце, и молния, и светящиеся трубки, и северное сияние — все это плазма, четвертое состояние вещества. В книге «Покоренная плазма» в доступной форме рассказано о плазме, встречающейся в природе и созданной человеком, об ученых, покоряющих плазму, о том, как и где применяется плазма в науке, технике, медицине, в быту. Юный читатель узнает из книги, что важнейшие проблемы современной науки — управляемые термоядерные реакции, непосредственное преобразование тепла в ток, квантовые генераторы, создающие лучи невиданной мощности, — решаются на основе использования плазмы.

Книга добавлена:
1-03-2023, 00:43
0
348
71
Покоренная плазма
Содержание

Читать книгу "Покоренная плазма"



Управляемая термоядерная…

Многие из вас, наверно, замечали, что когда печь топят не дровами, а углем, то тепла выделяется больше. Но еще сильнее нагреется печь, если в ней сжечь равное по весу количество нефти. Отсюда нетрудно сделать вывод, что уголь более выгодное топливо, чем дрова, а нефть выгоднее угля.

Если перевести эти слова на язык цифр, то получится следующее: один килограмм дров при сгорании выделяет 2,5 киловатт-часа энергии, килограмм угля — 8 киловатт-часов, а нефти еще больше — 11,6.

В последние годы начало применяться еще одно «горючее» — ядерное.

На атомных электростанциях, число которых растет из года в год, тепло добывают не из угля и не из нефти, а из ядерных глубин вещества. Атомные котлы «отапливаются» ураном. Заставляя ядра атомов этого тяжелого элемента распадаться на осколки, получают огромное количество энергии. Один килограмм делящегося урана выделяет 22 миллиона 300 тысяч киловатт-часов!

Выгодное «топливо», не правда ли?

Но ученые, покорив энергию делящихся ядер, и не думали останавливаться на этом. Они стали искать новые кладовые энергии и нашли их.

Все вы знаете о том, что существует водородная бомба. Взрывчатым веществом в этой бомбе является не обычный водород, а «тяжелый». Если ядро атома обычного водорода состоит из одной отрицательно заряженной частицы — протона, то в ядре тяжелого водорода, кроме протона, есть еще один или два нейтрона — незаряженные частицы, которые чуть-чуть тяжелее протонов.

Когда ядра тяжелого водорода удается сблизить друг с другом, то может произойти их соединение, синтез и могут образоваться ядра нового вещества, например, гелия. При этом выделяется огромная энергия, способная совершить колоссальные разрушения.

Сблизить ядра тяжелого водорода — задача нелегкая, потому что нужно преодолеть колоссальные силы отталкивания. Лишь при температуре в миллионы градусов удается добиться этого и дать начало термоядерной реакции.

Вот почему в водородную бомбу в качестве запала помещают обычную атомную, которая, взорвавшись, создает нужную температуру и заставляет соединяться ядра тяжелого водорода.

Взрывы бомб несут разрушения и смерть. Они — орудие войны.

Чтобы термоядерная реакция приносила пользу, нужно замедлить ее, заставить выделять энергию не мгновенно, не толчком, а постепенно.

Из большого бака воду можно вылить двумя способами: опрокинуть бак и всю воду вылить сразу или открыть кран и выливать воду тонкой струей. Прикрывая кран, можно регулировать мощность струи.

Ученые, работающие над проблемой управляемой термоядерной реакции, как раз и хотят добиться того, чтобы энергия соединения ядер водорода выделялась медленно, струей.

Добиться этого пока не удалось, но, когда задача будет решена, люди получат целый океан энергии.

Море нельзя вычерпать ведром. Термоядерная энергия — это море, из которого человек будет брать энергии столько, сколько нужно.

На земле неисчислимые запасы водородного горючего. Один килограмм тяжелого водорода, превратившись в гелий, способен выделить 177 миллионов 500 тысяч киловатт-часов энергии! Это в двадцать два миллиона раз больше по сравнению с углем. По этой цифре можно судить, насколько выгодно овладение термоядерной энергией.

Но причем здесь плазма? — могут спросить некоторые читатели.

А притом, что без плазмы эту проблему не решить.

Побывайте на Выставке достижений народного хозяйства СССР. Там в павильоне «Атомная энергия в мирных целях» вы увидите установки, в которых удалось получить температуру в несколько миллионов градусов. Установки эти плазменные, их создано несколько типов.

Посмотрите на рисунок, изображающий схему одного из плазменных нагревателей (стр. 212). Тут конденсатор — кладовая энергии. Когда эта «кладовая» наполнится зарядами, между искрами разрядника проскакивает искра. Ток возникает и в разрядной камере, изображенной прямоугольником. На мгновение там рождается плазма. Мощное магнитное поле сжимает плазму в огненный жгут и отгораживает ее от стенок. Сама плазма тоже начинает «уплотняться», сжиматься еще больше. В плазменном жгуте возникает «всплеск» температуры до трех-четырех миллионов градусов. В более сложных установках получены температуры пять-шесть миллионов градусов.

Расчеты показывают, что для начала термоядерной реакции нужна температура свыше ста миллионов градусов. Но сейчас никто не сомневается, что труднейшая задача современной науки будет решена. И сделают это ученые при помощи плазмы.

Подтверждением этого является, например, новое важное сообщение о достижениях советских физиков. В Институте атомной энергии имени И. В. Курчатова удалось получить плазму с температурой сорок миллионов градусов. Это самое крупное достижение в области высокотемпературной плазмы. Так оценили этот успех ученые многих стран.

Основная трудность, с которой столкнулись физики, пытавшиеся нагревать плазму, была вызвана неустойчивостью плазмы. Плазма, которую отгораживало от стенок разрядной камеры магнитное поле, просачивалась через магнитные силовые линии, не хотела сжиматься, что не давало возможности еще больше повысить ее температуру. Многие известные ученые считали, что неустойчивость плазмы преодолеть невозможно. Однако советские физики, работающие под руководством академика Л. А. Арцимовича, кропотливо изучали все виды неустойчивости плазмы и готовились ее штурмовать. И вот пришел первый крупный успех.

В установке, названной учеными пробкотроном, в разрядной камере был создан такой магнитный «забор», густота линий которого увеличивалась во все стороны от области, занимаемой плазмой. Этот «забор» не давал плазме ускользать, благодаря чему время жизни плазмы удалось увеличить до сотых долей секунды. В масштабах микромира это большое время: каждая частица плазмы успевает пробежать внутри установки путь в несколько километров.

Плазма, полученная в пробкотроне, занимает объем в несколько десятков литров. В каждом кубическом сантиметре такой плазмы содержится примерно десять миллиардов частиц — такая плотность получена тоже впервые. Но советские физики стремятся к новому рубежу. Они работают над установкой, в которой плазма имела бы плотность в десять тысяч раз большую и температуру свыше ста миллионов градусов.


Скачать книгу "Покоренная плазма" - Борис Фомин бесплатно


100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Физика » Покоренная плазма
Внимание