Как было получено изображение обратной стороны Луны

Геральд Богатов
100
10
(1 голос)
0 0

Аннотация: В брошюре рассматриваются принципы действия устройств, позволивших получить изображение обратной стороны Луны. В ней рассказывается о роли радиоэлектроники в завоевании Космоса, о том как была сфотографирована Луна с борта межпланетной автоматической станции, как эта фотография Луны была преобразована в электрические сигналы, и о тех задачах, которые решали советские ученые и инженеры при передаче и приеме этих сигналов.

Книга добавлена:
5-11-2023, 18:44
0
114
13
Как было получено изображение обратной стороны Луны

Читать книгу "Как было получено изображение обратной стороны Луны"



Время возвращения пучка в исходное положение должно быть минимальным. Чтобы пучок не прочерчивал на экране линий, мешающих наблюдениям, трубка во время обратного хода обычно запирается специальными гасящими импульсами. Время обратного хода пучка по кадру и строке и используется для посылки так называемых синхронизирующих сигналов. Последние служат для установления жесткой связи между движениями пучков передающей и приемной трубок, т. е. в случае автоматической межпланетной станции — между проекционной трубкой аппаратуры космической станции и трубками на наземных наблюдательных пунктах.

Генераторы развертки космической станции были собраны на полупроводниковых приборах с использованием малогабаритных, совершенных по своим электрическим свойствам конденсаторов, трансформаторов, сопротивлений и других элементов.

Осуществить развертку изображения на пленке световым пятном можно и другим способом. На экране электронно-лучевой трубки нужно в этом случае перемещать электронный пучок лишь в горизонтальном направлении, а развертку в вертикальном направлении осуществлять за счет одновременной непрерывной протяжки пленки в продольном направлении.

Как уже говорилось, фокусировка и отклонение электронного пучка могут быть осуществлены и магнитными полями. Трубки с магнитной фокусировкой и магнитным отклонением пучка обеспечивают большую четкость изображения, чем электростатические трубки, особенно при больших размерах экранов. Трубки с магнитной фокусировкой и магнитным отклонением пучка при равных размерах экранов имеют меньшую длину по сравнению с электростатическими. Однако отклонение пучка достигается в электростатических трубках более простыми средствами. Размеры, вес и потребляемая энергия устройств, осуществляющих электромагнитное управление электронным пучком, оказываются большими, чем у аналогичных электростатических трубок.

В системах с бегущим световым пятном обычно используют электронно-лучевые трубки с повышенной яркостью свечения экрана. Повышение яркости свечения достигается в них за счет применения люминофоров с повышенной светоотдачей, увеличения ускоряющего напряжения (напряжения второго анода в данном случае), которое может достигать нескольких десятков тысяч вольт, и увеличения количества электронов в пучке.

Итак, использование электронно-лучевой трубки позволяет в определенной последовательности просвечивать небольшие участки пленки, на которой зафиксировано изображение Луны. Световой поток, пропущенный этими участками пленки, попадает на фотоэлектронный умножитель, в котором осуществляется многократное усиление фототока.

Принцип действия фотоэлектронного умножителя рассмотрим на примере многокаскадного фотоэлектронного умножителя, схематическое изображение электродов которого приведено на рис. 11. В приборе имеется несколько электродов, на поверхность которых нанесен активирующий слой цезия. Первый из электродов является фотокатодом, а последний — анодом. Фотокатод здесь по форме подобен промежуточным электродам — эмиттерам. Он может быть выполнен также в виде полупрозрачного покрытия на внутренней поверхности той или иной части колбы умножителя. Перед фотокатодом на пути светового пучка помещена редкая проволочная сетка, препятствующая слишком сильному рассеянию электрического поля вблизи фотокатода. Число эмиттеров, располагаемых между фотокатодом и анодом, у разных приборов различно (до 16). Эмиттеры подключены к потенциометру так, что величина потенциала их увеличивается на одинаковую величину при увеличении порядкового номера электрода, начиная с фотокатода. Под действием светового потока с поверхности фотокатода испускаются электроны. Эти электроны ускоряются электрическим полем, бомбардируют первый эмиттер и выбивают с поверхности его электроны, причем количество вторичных (выбитых) электронов должно быть больше числа первичных электронов. Такой эффект достигается благодаря определенному выбору материала и соответствующей обработке поверхности эмиттеров. Применяемые в настоящее время эмиттеры испускают пять и более электронов на один первичный электрон. Иными словами, коэффициент вторичной электронной эмиссии поверхности эмиттера равен 5 и более.

Рис. 11. Электродная система фотоэлектронного умножителя. ФК — фотокатод; Э1—Э7 — эмиттеры; А — анод; С — световой пучок; П — проволочная сетка.

Вторичные электроны, вылетевшие из первого эмиттера, попадают на второй эмиттер, находящийся под большим потенциалом относительно катода, и выбивают из него еще большее число вторичных электронов. Таким образом, электронный поток на пути от фотокатода к аноду непрерывно возрастает и в цепи анода появляется ток, значительно превосходящий фототок катода. Практически удается получить усиления фототока внутри прибора до 1 млн. раз, а в приборах усложненной конструкции усиление достигает 1 млрд. раз. Усиление К фотоэлектронного умножителя будет зависеть от величины коэффициента вторичной электронной эмиссии б и количества эмиттеров п следующим образом:

Для того чтобы действительный коэффициент усиления приближался по своей величине к расчетному, определяемому по этой формуле, необходимо, чтобы все вторичные электроны попадали с каждого предыдущего эмиттера на последующий, а не пролетали мимо. Если часть электронов минует один или несколько эмиттеров, не «умножаясь» на них, то общий коэффициент усиления снижается. Для того, чтобы вторичные электроны не пролетали мимо соседних эмиттеров, им придана специальная ковшеобразная форма. Такая форма эмиттеров была найдена после тщательных исследований.

Последний эмиттер отличается по форме от остальных и выполнен так, чтобы анод можно было поместить достаточно близко от его поверхности. При этом пространственный заряд, который может образоваться скапливающимися электронами, рассасывается, чем обеспечивается линейность усиления. Анод в описываемом здесь фотоумножителе представляет собой рамку с натянутыми на ней проволочными нитями.

По такой схеме построена умножающая часть многих фотоэлектронных умножителей, выпускаемых нашей промышленностью.

Существует несколько типов фотоэлектронных множителей, в которых электронные потоки с одного эмиттера на другой направляются несколько иначе. В одном случае для направления электронных потоков используется специальный, общий для всех эмиттеров электрод — сетка. В другом случае эмиттеры умножителя устроены так, что первичные электроны бомбардируют их с одной стороны, а вторичные электроны выходят с противоположной стороны; такие эмиттеры располагаются один за другим.

В третьем случае фокусировка электронов осуществляется взаимодействием магнитного и электрического полей и движущихся электронов.

Сигналы на нагрузочном сопротивлении фотоэлектронного умножителя ничтожны по своей величине, и потому они подводятся к усилителю, а после усиления и смешения с синхронизирующими и гасящими импульсами, создаваемыми в схеме синхрогенератора, поступают в радиопередатчик. В передатчике высокочастотные сигналы модулируются сигналами изображения. Процесс модуляции, как известно, заключается в том, что в соответствии с изменениями величины и частоты сигнала изображения происходит изменение одного из параметров колебаний высокой частоты (амплитуды, фазы или частоты). Применяются и другие виды модуляции. Так, например, в радиофототелеграфии сигналы изображений часто передают методами амплитудной и частотной модуляций вспомогательной несущей частоты. Полученным частотно-модулированным сигналом модулируют затем амплитуду колебаний высокой несущей частоты радиопередатчика.

Последние виды модуляции хороши тем, что прием сигналов оказывается мало зависящим от постоянства условий распространения электромагнитных колебаний и положения передающих антенн по отношению к приемным антеннам. В приемном устройстве модулированные по частоте колебания после соответствующего усиления подаются на вход ограничителя, где амплитуды сигнала выравниваются и тем самым ослабляется влияние условий распространения и других помех на качество воспроизведения изображения. С выхода ограничителя сигналы подаются на помехозащитные устройства, а затем на частотный детектор, На выходе детектора получают сигналы изображения, которые усиливаются и подаются к устройствам записи сигналов изображения или к воспроизводящим устройствам. Применение этих методов передачи неподвижного изображения оказывается возможным при узкой полосе частот. При широкой полосе передаваемых частот чаще используют амплитудную модуляцию несущей частоты. При этом, однако, передача получается наименее защищенной от различных помех. Амплитудная модуляция используется преимущественно для передачи сигналов движущегося изображения в телевизионном вещании.


Скачать книгу "Как было получено изображение обратной стороны Луны" - Геральд Богатов бесплатно


100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Астрономия и Космос » Как было получено изображение обратной стороны Луны
Внимание