Симметричные числа и сильная гипотеза Гольдбаха-Эйлера

Николай Конон
100
10
(1 голос)
0 0

Аннотация: В книге исследуются свойства симметричных чисел натурального ряда. На основе указанных свойств показан путь решения гипотезы Гольдбаха-Эйлера. Доказывается несколько теорем, которые позволяют решить проблему Гольдбаха-Эйлера.

Книга добавлена:
2-05-2023, 10:53
0
232
5
Симметричные числа и сильная гипотеза Гольдбаха-Эйлера
Содержание

Читать книгу "Симметричные числа и сильная гипотеза Гольдбаха-Эйлера"



P18

61

61

где Pi – простые числа, образующие симметричные пары;

dp– разница соседних простых чисел Pi+1Pi по строке или по столбцу.

Выделим основные свойства построенной таблицы 5:

во-первых, для любого числа 2n по таблице можно составить симметричные пары простых чисел; а

во-вторых, для любой пары симметричных простых чисел можно найти соответствующие им числа n и соответствующее ему четное число 2n.

Пользоваться таблицей очень просто.

Для этого берем любое четное число 2n и в таблице находим соответствующее ему число n. Затем, двигаясь по горизонтальной строке и вертикальному столбцу, выбирается симметричная пара простых чисел.

Например, для четного числа 44, путем деления его на число 2 получаем число n равное 22. Затем по таблице выбираем ячейку с данным числом и пары симметричных простых чисел, соответствующих этому числу путем мысленного движения вверх по столбцу и влево по строке. Для числа 22 таких пар оказалось четыре. В результате имеем пары: (13,31); (7,37); (3,41); (1,43).

Если известна симметричная пара простых чисел и необходимо определить число ей соответствующее, выбирается строка и столбец, соответствующие паре, а затем на пересечении выбранных строки и столбца находиться число n, которому соотноситься выбранная симметричная пара.

Например, для пары простых чисел (13,31) в пересечении строки числа 13 (P6) со столбцом числа 31 (P11) выбираем число n равное 22. Тогда четное число 2n будет равно 44, которое равно сумме симметричной пары чисел.

Изучение полученной таблицы 5 показывает, что, она бесконечна и охватывает все натуральные числа от 1 до .

Это следует из того, что множество простых чисел бесконечно, что позволяет сделать вывод о бесконечности и таблицы 5. В практических целях таблица 5 может ограничиваться тем предельным числом n, до которого исследуются симметричные простые числа.

Анализируя таблицу 5, можно предположить, что для любого числа от 1 до n найдется хотя бы одна симметричная пара простых чисел.

Заметим еще одно важное, но не совсем очевидное свойство таблицы 5.

Если обозначить разность между двумя соседними простыми числами в строке или столбце как dpi , то она будет равна

dpi=pi+1 – pi, (4.1)

где pi – i –тое простое число в строке или в столбце;

pi+1 – последующее простое число в строке или в столбце;

i – номер простого числа в строке или столбце.

Анализ показывает, что разности между двумя числами соседних строк или столбцов в таблице равны разности dpi деленной на 2, т.е. шагу симметрии

δi= dpi /2, (4.2)

где i – номер строки или столбца.

Приведем примеры (см. таблицу 5):

Имеем для восьмого (P8) и девятого (P9) столбца i =8,

Δ8= P9P8 = 2319 = 4;

А шаг симметрии будет δ8= dpi/2=2.

Тогда, по всему девятому столбцу имеем:

a19= a18+ δ8=10+2=12;

a29= a28+ δ8=11+2=13;

a39= a38+ δ8=12+2=14;

a49= a48+ δ8=13+2=15;

………………..

a89= a88+ δ8=19+2=21.

Что подтверждается данными таблицы 5.

Далее, к примеру, для шестой (P6) и седьмой (P7) строк i=6 имеем:

a67= a66+ δ6=13+2=15;

a68= a67+ δ7=15+1=16;

a69= a68+ δ8=16+2=18;

a610= a69+ δ9=18+3=21;

………………..

a618= a617+ δ17=36+1=37.

Следует заметить, что в первом примере значение δi для всех элементов в столбце одинаковое, а во втором примере δi изменяется при переходе от одного элемента строки к другой в зависимости от номера столбца.

Если для определенности будем считать, что в верхней строке расположены простые числа a, в крайней левом столбце простые числа b, то чтобы не рассматривать зеркально верхнему треугольнику нижний от главной диагонали треугольник, следует принять условие ab. Тогда в общем виде таблица 5 будет симметрична относительно главной диагонали и все свойства для нижней части таблица 5 будут идентичны свойствам для верхней части.

Таким образом, из вышесказанного обобщения можно записать следующие выражения:

– для всех элементов столбца

a*i+1=a*ii;

– для всех элементов строки

ai+1*=ai*+δi,

где

δi=(pi+1pi)/2;

i=1,2,3, …. k – номер столбца или строки в таблице 5;

* – символ, обозначающий индексы по всей строке или столбцу.

И, наконец, исследуя симметричные числа либо на числовой оси (см. рис. 2) либо по таблице 5 можно выделить еще одно их свойство. Это относиться к тем арифметическим прогрессиям, которые они образуют. Выразим это свойство следующим утверждениями.

Утверждение 1. Любое число n натурального ряда больше 1 равно среднему арифметическому симметричных пар этого числа.

Доказательство данного утверждения очевидно и следует из выражения (1.5).

Из данного свойства вытекает и последующее свойство симметричных пар чисел, сформулированного в утверждении 2.

Утверждение 2. Любое число n натурального ряда больше 1 и принадлежащие ему симметричные пары числа являются членами арифметической прогрессии.

Доказательство указанного утверждения также очевидно и вытекает из выражений (1.7), (2.2).

Утверждение 3. Симметричная пара любого числа n больше 1 состоит из симметричных пар либо только четных, либо только нечетных чисел.

Доказательство.

Согласно (1.3) имеем:

a=n δ

b=n + δ,

где δ=1,2… n.

Отсюда следует, что для любого числа n пара чисел a и b будут иметь одинаковую четность, т.е. одновременно являются либо четными, либо нечетными, так как арифметические операции «+» и «–» являются однотипными.

5. Обобщающие выводы и четыре теоремы

Предыдущие разделы работы подвели к общим выводам представления четных чисел суммой двух других.

Исходя из вышеописанного можно сделать предположение, что любое четное число больше двух представимо одновременно в виде суммы двух чисел в следующих сочетаниях:

1) суммой симметричных пар четных чисел;

2) суммой симметричных пар нечетных чисел;

3) суммой симметричных пар нечетных составных чисел;

3) суммой симметричных пар простых чисел.

Доказательства сделанных утверждений подготовлены в предыдущих разделах, а некоторые фактически уже доказаны.

Однако приведем доказательства по каждому из данных утверждений в виде теорем.

Теорема 2. Любое четное число натурального ряда представимо суммой симметричных пар четных чисел.

Доказательство. Из определения самого натурального числа, леммы 1 и теоремы 1, следует, что любое натуральное число k большее 1 имеет k симметричных пар чисел ai и bi, таких, что их среднеарифметическое равно самому числу.

Действительно, если рассмотрим число k, а также его симметричные пары ai и bi, то их среднеарифметическое будет

(ai + bi)/2 = k. (5.1)

Но согласно (1.3) симметричные пары чисел можно записывать следующими выражениями ai = ki, bi= k + i, то такие пары чисел при i = δ = 1, 2, 3, …… n.

Следовательно, их сумма будет удовлетворять выражению (5.1) и при этом будут симметричными.

Но так n = 2k , то отсюда следует, что любое четное число n представимо k парами симметричных чисел, таких что

ai + bi = 2k . (5.2)

Из выражения (5.2) также следует, что, так как в правой части стоит четное число, то сумма в левой части должна быть четной. В силу этого числа ai и bi должны быть одновременно либо четными, либо нечетными. Из свойств чисел натурального ряда следует, в силу утверждения 3, что симметричные числа ai и bi являются либо только четными, либо только нечетными.

Очевидно, что при k>1, из k симметричных пар, найдется хотя бы одна пара, в которой ai и bi являются только четными.

Из этого вытекает, что в множествах A и B да найдется хотя бы одна пара четных чисел, таких, что выполниться равенство (5.2), а это и доказывает теорему.

Теорема 3. Любое четное число натурального ряда больше 1 представимо суммой симметричных пар нечетных чисел.

Доказательство. Запишем четное число в виде n = 2k. Тогда из доказательства предыдущей теоремы 2 вытекает, что любое четное число представимо симметричной парой ai + bi = 2k. Очевидно, в силу утверждения 3, при k>1 найдется симметричная пара, в которой ai и bi являются только нечетными.

Из этого вытекает, что во множествах A и B да найдется хотя бы одна пара нечетных симметричных чисел, таких, что выполниться равенство (5.2), а это и доказывает теорему

Из свойств ряда натуральных чисел доказательства предыдущей теоремы 2 вытекает, что любое четное число представимо симметричной парой нечетных чисел.

Теорема 4. Любое четное число натурального ряда больше 2 представимо суммой симметричных пар простых чисел.

Доказательство. Рассмотрим множество нечетных чисел nchA меньших n, и множество нечетных чисел nchВ больших n и меньших 2n, т.е. |nchA| < n; n <|nchA| < 2n.

Согласно доказательству в теореме 3 для любого числа n больше 2 найдутся симметричные пары нечетных чисел a и b.

Выше было показано, что эти множества состоят из подмножеств нечетных составных и простых чисел, таких что

nchA = SA U PA, nchВ = SB U PB, |SA| + |PA| = |SВ| + |PВ|, |PA| > |PВ|, |SA| < |SВ|. (5.3)

В предыдущей теореме 3 было доказано, что из двух множеств A и B найдется пара a и b такая, что в этой паре числа будут четные или нечетные.

Рассмотрим далее два множества простых чисел PAи .

Допустим, что для числа n из всей совокупности симметричных пар (a, b) не нашлось ни одной симметричной пары простых чисел, то есть в паре (a, b) элементы не являются простыми числами. Это значит, что множество PA и множество PB не пересекаются по симметричным парам, то есть PA PB ≡ Ø.

Так как, в силу (2.7) и (5.3), |nchA | = |nchВ|, и nchA = SA U PA, nchВ = SB U PB, а во множествах PAи PB не нашлось ни одного симметричного числа, то, следовательно, если |PA| ≠ 0 и |PB| ≠ 0, то возможно два варианта:

1) Множество SA должно включать некое подмножество ŚA, которое должно полностью соответствовать множеству PB, т.е. SA = PВ U ŚA. Аналогично, множество SB должно включать некое подмножество ŚВ, соответствующее множеству PA, т.е. SВ = PA U ŚВ. В этом случае должны выполняться следующие равенства


Скачать книгу "Симметричные числа и сильная гипотеза Гольдбаха-Эйлера" - Николай Конон бесплатно


100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Математика » Симметричные числа и сильная гипотеза Гольдбаха-Эйлера
Внимание