Как были открыты химические элементы

Трифонов Дмитрий
100
10
(1 голос)
0 0

Аннотация: В книге изложена история открытия химических элементов от древних времен до наших дней. При описании этой истории авторы рассказывают о важнейших закономерностях в открытиях элементов, о роли различных методов исследования, освещают вклад ученых разных стран в развитие учения об элементах. Книга является дополнением к школьным учебникам по химии и может быть использована учащимися при самостоятельной работе.

Книга добавлена:
22-08-2023, 06:27
0
229
135
Как были открыты химические элементы
Содержание

Читать книгу "Как были открыты химические элементы"



АСТАТ И ФРАНЦИЙ

В июле 1925 г. английский ученый В. Фриенд отправился в Палестину. «Земля обетованная» привлекала его отнюдь не по религиозным соображениям. Он не был ни археологом, ни туристом, путешествующим в поисках экзотических мест. В. Фриенд был просто-напросто химиком, и его багаж составляло в основном множество самых обычных склянок, куда ученый намеревался собирать пробы воды Мертвого моря. По концентрации растворенных солей Мертвое море почти не имеет себе равных среди водоемов земного шара. Рыба в нем не живет, человек может плавать в его водах, не рискуя утонуть, — так велика плотность этих вод.

Безрадостные библейские ландшафты не омрачали настроения В. Фриенда. Он верил в успех, а цель его состояла в том, чтобы обнаружить в водах Мертвого моря экаиод и экацезий, которые химикам никак не удавалось поймать. Ведь в солях, растворенных в морской воде, много щелочных металлов и галогенов; в Мертвом море их должно быть особенно много. И тем больше вероятность, что среди них, пусть в ничтожных количествах, затерялись неизвестные элементы — самый тяжелый галоген и самый тяжелый щелочной металл.

В. Фриенд, конечно, не был оригинален в выборе направления поисков. Еще в конце XIX в. химик не затруднился бы ответить на вопрос, где искать экаиод и экацезий в земной коре. Конечно же там, где встречаются в природе соединения щелочных металлов и галогенов: в залежах калийных солей, в морских и океанских водах, в различных минералах, в водах буровых скважин, в некоторых морских водорослях — словом, объектов для поисков было более чем достаточно.

Но более чем достаточно оказалось и неудачных попыток обнаружить экаиод и экацезий. И усилия В. Фриенда лишь разделили судьбу прежних безуспешных попыток.

Перенесемся в последние десятилетия прошлого века. Когда Д. И. Менделеев разработал периодическую систему элементов, то выяснилось, что в ней между висмутом и ураном существует много пробелов, соответствующих неизвестным элементам. Эти пробелы стали быстро заполняться после обнаружения явления радиоактивности. Встали на свои места полоний и радий, радон и актиний, наконец, протактиний занял место между ураном и торием. Только с экаиодом и экацезием получилась заминка. Правда, она не особенно смущала ученых. Неизвестные «эки» должны быть радиоактивными, поскольку ни у кого не возникало сомнений, что радиоактивность — общее свойство элементов, которые тяжелее висмута. Поэтому рано или поздно существование восемьдесят пятого и восемьдесят седьмого будет доказано радиометрическими методами.

Своеобразные генераторы вторичных химических элементов (природные изотопы урана и тория) дают начало длинным цепочкам последовательных радиоактивных превращений. В первое десятилетие XX в. ученые имели в своем распоряжении около сорока радиоактивных изотопов элементов конца периодической системы — от висмута до урана. Эти радиоэлементы объединялись тремя радиоактивными семействами. Их возглавляют торий-232, уран-235 и уран-238. Каждый радиоактивный элемент послал своих представителей в эти семейства. Каждый, кроме экаиода и экацезия. Ни в одной из трех цепочек не было звена, которое отвечало бы изотопам восемьдесят пятого или восемьдесят седьмого элементов. Тогда напрашивается неожиданный вывод, что экаиод и экацезий не являются радиоактивными элементами. Но почему? Никто не брал на себя смелость ответить на подобный вопрос. Стало быть, искать их в рудах урана и тория, где содержатся все радиоактивные элементы без исключения, не имеет смысла.

Предположение о вероятной стабильности экаиода и экацезия не подтверждалось. Но столь же тщетными оказывались попытки обнаружить изотопы этих элементов на ветвях радиоактивных «дерев». Правда, имелась одна возможность, которой не следовало пренебрегать. Распадается ли данный радиоактивный изотоп только одним-единственным способом или же двумя способами? Скажем, обладает способностью испускать и α- и β-частицы. Если это так, то продуктами распада этого изотопа будут изотопы двух различных элементов, а цепочка радиоактивных превращений в месте исходного изотопа как бы раздвоится, разветвится. Ученые давно интересовались этим вопросом, и для некоторых изотопов как будто удалось получить положительный результат.

В 1913 г. англичанин А. Кранстон работал с радиоэлементом MsTh-II (изотопом актиния-228). Этот изотоп испускает β-частицу и превращается в торий-228. Но ученому показалось, что в очень слабой степени здесь наблюдается и α-распад. В этом случае продуктом превращения должен был оказаться долгожданный экацезий. В самом деле,

А. Кранстон, однако, ограничился лишь констатацией наблюдения.

Прошел всего год. Три радиохимика из Вены — С. Мейер, Г. Гесс и Ф. Панет — исследуют изотоп актиний-227, принадлежащий семейству урана-235. Один опыт сменяется другим, и, наконец, чуткие приборы регистрируют α-частицы неизвестного происхождения. α-Частицы каждого радиоактивного изотопа характеризуются определенной длиной пробега в воздухе (порядка нескольких сантиметров). α-Частицы в работах венских химиков пробегали в воздухе 3,5 см. Частицы, испускаемые другими известными α-активными изотопами, пробегали дальше или ближе, но не то же расстояние. И в результате трое исследователей из Венского радиевого института приходят к выводу, что эти частицы говорят об α-распаде обычно β-активного актиния-227. Продуктом распада должен быть изотоп элемента № 87.

Открытие требовало подтверждения, новых экспериментов. С. Мейер, Г. Гесс и Ф. Панет были готовы доказывать свою правоту, но им помешала первая мировая война.

Венские исследователи действительно наблюдали α-излучение 227Ас, и тем самым в их присутствии рождались атомы восемьдесят седьмого. Но это ведь нужно было доказать. Опровергать все же было легче. Скептики возражали, что наблюдавшаяся α-активность слишком слаба, и достигнутый результат, вероятно, ошибочен. Другие указывали, что изотоп соседнего элемента протактиния тоже испускает α-частицы с длиной пробега, близкой к 3,5 см. Возможно, что исследователей подвела примесь протактиния.

Открытия восемьдесят пятого и восемьдесят седьмого элементов совершались неоднократно, и им предлагали разные названия: дакин и молдавий, алкалиний и гельвеций, лептин и англогельвеций. Но то были лишь заблуждения. За пышными именами якобы открытых элементов царила пустота.

Массовые числа всех изотопов, входящих в семейство тория-232, без остатка делятся на четыре. Поэтому ториевое семейство называют еще 4n-семейством. Массовые числа двух урановых семейств при делении на 4 дают в остатке два или три. По этой причине семейство урана-238 обозначают как (4n+2) — семейство, а урана-235 — как (4n+3) — семейство.

Но где же (4n+1) — семейство? Может быть, именно в этом неизвестном четвертом ряду радиоактивных превращений и располагаются изотопы экаиода и экацезия. Предположение не было лишено смысла, но ни один из известных радиоактивных изотопов по величине своего массового числа не мог быть отнесен к этому гипотетическому семейству.

Скептики не без основания утверждали, что действительно на заре существования Земли имелся и четвертый радиоактивный ряд. Но все входящие в него изотопы (в том числе и родоначальник ряда) имели слишком малые периоды полураспада и потому давным давно исчезли с лица нашей планеты. Четвертое радиоактивное древо высохло задолго до того, как появился первый человек.

В 20-х годах теоретики пытались реконструировать это семейство, представить как оно выглядело, если бы существовало. В этой воображаемой картине находилось место для изотопов элементов № 85 и № 87 (но зато отсутствовали изотопы радона). И этот путь поисков неуловимых элементов оказывался бесперспективным. Быть может, они вовсе не существуют?

Но до истины было не так уже далеко. Однако, прежде чем рассказать, каким способом ученые заполучили, наконец, «синюю птицу», вернемся к технецию, элементу № 43 — первому из синтезированных элементов.

Почему именно он оказался первым? Прежде всего потому, что не вызывал трудностей выбор мишени и бомбардирующей частицы. Материалом мишени мог служить молибден, который в то время уже умели приготовлять в достаточно чистом состоянии. Бомбардирующими снарядами могли быть нейтроны и дейтроны, причем дейтроны можно было разгонять на существующих ускорителях. Вот почему открытие технеция положило начало эпохе синтезированных элементов.

С прометием дело усложнилось тем, что он принадлежал к редкоземельному семейству, и в данном случае основные трудности коренились в определении его химической природы.

А вот по отношению к элементам № 85 и 87 задача представлялась куда более сложной. Для того чтобы попытаться получить экаиод, ученые могли располагать лишь одним вариантом для мишени — элементом висмутом с порядковым номером 83; столь же однозначным был и выбор бомбардирующего агента (α-частиц). Нельзя было использовать предшествующий экаиоду полоний в качестве мишени. Не годились и элементы, стоящие в периодической системе перед висмутом (от них никак нельзя было дотянуться до восемьдесят пятого, ибо отсутствовали необходимые снаряды).

Экацезий вообще представлялся недоступным искусственному синтезу. Чтобы его синтезировать, в 30-х годах отсутствовали подходящие мишени и снаряды. Но таковы бывают зигзаги в истории науки, что именно восемьдесят седьмой стал вторым после технеция достоверно открытым элементом из четверки отсутствовавших элементов в старых границах периодической системы.

И вот наступает момент, когда линии экаиода и экацезия, так долго тянувшиеся параллельно, на определенное время расходятся, и истинную историю открытия этих элементов целесообразно рассмотреть по отдельности.

Авторами синтеза элемента № 85 стали ученые, работавшие в Беркли (США), — Дж. Корсон, К. Маккензи и Э. Сегре. Итальянский физик Э. Сегре к этому времени переселился в США и среди группы исследователей был единственным, кто уже принимал участие в искусственном получении нового элемента — технеция. Эти авторы 16 июля 1940 г. отправили в крупнейший физический журнал «Physical Review» большую статью, озаглавленную «Искусственно радиоактивный элемент 85». В ней они описали, как в результате бомбардировки висмутовой мишени потоком α-частиц, ускоренных на циклотроне, им удалось получить радиоактивный продукт в соответствии с ядерной реакцией . По всей вероятности, он являлся изотопом экаиода с периодом полураспада 7,5 ч и массовым числом 211. Э. Сегре и его коллеги провели искусные химические эксперименты с ничтожными количествами нового элемента и убедились, что он похож на иод и обнаруживает слабые металлические свойства.

Исследование было достаточно убедительным. Однако новый элемент пока оставался безымянным. Кроме того, дальнейшие работы над экаиодом пришлось отложить в связи с началом войны. Лишь в 1947 г. искусственное получение восемьдесят пятого снова встало на повестку дня, и те же трое ученых объявили о синтезе другого изотопа с массовым числом 210. Его период полураспада был немногим больше — всего 8,3 ч. Как оказалось потом, это самый долгоживущий изотоп элемента № 85. И способ его получения был аналогичным. Только ученые несколько увеличили энергию бомбардирующих α-частиц. В результате из образующегося составного промежуточного ядра (209Bi+α) вылетало не два, а три нейтрона, и потому массовое число изотопа становилось на единицу меньшим. Только теперь решили дать название новому элементу — «астатин», от греческого слова, означающего «неустойчивый». В отечественной литературе ныне принято название «астат» (символ At).


Скачать книгу "Как были открыты химические элементы" - Трифонов Дмитрий бесплатно


100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Химия » Как были открыты химические элементы
Внимание