Как появилась Вселенная? Большие и маленькие вопросы о космосе

Герайнт Льюис
100
10
(1 голос)
0 0

Аннотация: Кванты – это сверхмалые частицы, кирпичики «всего», космос – это триллионы звёзд и постоянно расширяющихся галактик. Жизнь на необъятных просторах Вселенной неотделима от взаимодействий в масштабах кварков. Объединяя эти измерения, авторы книги – ученые-физики, ведут диалог в поисках ответов на самые фундаментальные вопросы науки:

Книга добавлена:
27-05-2024, 14:11
0
70
63
Как появилась Вселенная? Большие и маленькие вопросы о космосе
Содержание

Читать книгу "Как появилась Вселенная? Большие и маленькие вопросы о космосе"



Вселенная как Lego

Была ли возможность избежать «дейтериевого бутылочного горлышка»? Разумеется, должны существовать иные пути образования тяжёлых элементов. Что, если вдобавок к объединению протона и нейтрона в дейтерий, мы рассмотрим склейку двух протонов (дипротон) или двух нейтронов (динейтрон) и дальнейшее построение элементов из этих «кирпичиков»? Разве не забавно было бы строить Вселенную на манер башни из Lego, соединяя разные блоки друг с другом так и этак? Но, увы, это невозможно: ядерная физика всё-таки не алхимия. Некоторые реакции очень редки, а некоторые – вообще невозможны.

У гелия-3 три нуклона (два протона и один нейтрон), у гелия-4 четыре (два протона и два нейтрона), и так далее, до урана-238, самого тяжёлого из природных элементов. Чтобы строить элементы из протонов и нейтронов, нам придётся склеивать меньшие ядра, получая всё более тяжёлые. Если исходный материал – просто океан отдельных протонов и нейтронов, то, чтобы этот процесс начать, неизбежно придётся пройти через что-то состоящее всего из двух нуклонов. У нас всего три возможности составить такую пару: протон-протон (дипротон), нейтрон-нейтрон (динейтрон), или протон-нейтрон (дейтерон). Мы можем наивно предположить, что дипротоны не могут существовать из-за электростатического отталкивания – в конце концов, одинаковые заряды отталкиваются, а каждый протон обладает положительным электрическим зарядом. Однако сильное взаимодействие, которое склеивает нуклоны друг с другом, называется так не зря. На масштабах, которые мы здесь рассматриваем, отталкиванием зарядов можно пренебречь. Массивные ядра с большим количеством протонов знать не знают ни о каких электромагнитных силах. Мы ещё поговорим об этом позже!

Итак, дипротоны, динейтроны и дейтероны, похоже, прекрасно подходят на роль кубиков, из которых состоит вещество. Но мы не учли одну вещь – спин. Идея спина была введена в квантовую механику Вольфгангом Паули в 1924 году.[32] Он определил эту величину как «двузначность, не поддающуюся классическому описанию». Двузначность попросту означает нечто, принимающее только два различных значения (как выключатель настольной лампы). Но в классической физике нет ничего, что ведёт себя подобным образом. Как же тогда это описать? Вы угадали – с помощью квантовой механики!

Спин – это внутренняя степень свободы фундаментальной частицы. Вот почему у этого понятия нет хорошего классического аналога. Это одна из первых концепций квантовой физики, с которой встречаются студенты, и происходит это обычно на занятиях по химии. В каждой школьной химической лаборатории на стене висит периодическая таблица элементов. Они пронумерованы по порядку, от 1 (водород, H) до 118 (оганесон, Og), но поначалу кажется, что они организованы в таблицу довольно странным образом. Водород и гелий одиноко стоят в верхней строке, но по мере движения вниз строки начинают заполняться. Всё объясняется в основном порядком, которому следует расположение электронов в атомах каждого элемента. В периодической таблице представлены нейтральные атомы, каждый – со своим полным комплектом электронов. Не будем забывать, однако, что в ранней Вселенной существовали только водород и гелий и что в течение нескольких сотен тысяч лет Вселенная оставалась слишком горячей, чтобы электроны могли надолго прицепиться к ядрам. Но вернёмся к периодической таблице.

При обсуждении атомов на химическом уровне используются такие понятия, как орбитали, оболочки и квантовые числа. Они определяют различные свойства электронов, окружающих ядро. Одно из таких квантовых чисел придумал Паули, чтобы объяснить расположение электронов в оболочках атомов. Правило, выведенное им, заключается в том, что никакие два электрона не могут иметь одного и того же набора квантовых чисел – это так называемый принцип запрета Паули. Возможно, вы помните порядок заполнения орбиталей электронами, который когда-то проходили на уроках химии – 1s, 2s, 2p… 3d, и т. д.

Мы только что сказали, что у всех частиц есть спин. Самая маленькая величина спина – когда его нет, то есть он равен нулю. Оказывается, в одном отношении Паули был неправ: двузначность спина электронов не универсальна. У спина может быть больше значений, и его разрешённые значения могут быть целыми или полуцелыми, то есть спин некоторого объекта может равняться 0, ½, 1, 1½, 2, и т. д. Сейчас мы знаем, что фундаментальные частицы с целочисленными значениями спина (0, 1, 2, и т. д.) ведут себя совершенно не так, как частицы с полуцелым спином (½, 1½, 2½, и т. д.). Первые называются бозонами, а вторые фермионами. Ключевое различие между ними – это, конечно, их отношение к принципу запрета Паули. Согласно ему никакие два фермиона не могут находиться в одном квантовом состоянии: если у нас есть точное описание фермиона (например, протона или электрона), никакой другой фермион не может иметь того же описания. Вспомним, что в школьной химии вам приходилось приписывать каждому электрону различное квантовое число. Таким образом, как только все внутренние степени свободы фермионов – такие, как спин – использованы, другие фермионы уже не могут занимать ту же область пространства. Бозонов же, напротив, туда может набиться сколько угодно – они не подчиняются принципу запрета Паули. В некотором смысле именно поэтому пространство занято в первую очередь веществом, построенным из фермионов, а не из бозонов. Так что не сердитесь, если после бесконечных обедов с индейкой в День Благодарения вы заметите, что объем вашей талии на несколько сантиметров больше, чем был: виновата квантовая физика!

Возвращаясь к заполнению орбиталей, вспомним, что спин электронов часто обозначался стрелкой, направленной вверх или вниз. Это именно та двузначность, о которой говорил Паули. У каждого электрона спин равен ½; так же обстоит дело и с нуклонами – протоном и нейтроном. В широком смысле в квантовой физике спин может принимать любой знак: в случае электрона это ½ или —½. Знак не имеет большого значения: как мы уже упоминали, спин – абстрактная внутренняя степень свободы. Поэтому ½ или —½ – это всё равно, что n или p, 0 или 1, ☺ или – в общем, вы поняли. Важно, что у двух фермионов со спином ½ спин не может быть направлен в одну сторону, если эти частицы занимают один и тот же участок пространства, то есть связаны друг с другом.

Поэтому в дипротоне спины протонов должны быть направлены в противоположные стороны, иначе протоны находились бы в одном и том же квантовом состоянии, что нарушило бы принцип запрета Паули. То же самое относится и к динейтрону. Однако в дейтероне протон и нейтрон могут иметь одинаковое значение спина, так как они различаются по другому параметру – например, массой.


Скачать книгу "Как появилась Вселенная? Большие и маленькие вопросы о космосе" - Герайнт Льюис бесплатно


100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Астрономия и Космос » Как появилась Вселенная? Большие и маленькие вопросы о космосе
Внимание