Как появилась Вселенная? Большие и маленькие вопросы о космосе

Герайнт Льюис
100
10
(1 голос)
0 0

Аннотация: Кванты – это сверхмалые частицы, кирпичики «всего», космос – это триллионы звёзд и постоянно расширяющихся галактик. Жизнь на необъятных просторах Вселенной неотделима от взаимодействий в масштабах кварков. Объединяя эти измерения, авторы книги – ученые-физики, ведут диалог в поисках ответов на самые фундаментальные вопросы науки:

Книга добавлена:
27-05-2024, 14:11
0
70
63
Как появилась Вселенная? Большие и маленькие вопросы о космосе
Содержание

Читать книгу "Как появилась Вселенная? Большие и маленькие вопросы о космосе"



Кто пролил свет на пространство и время

Во времена рождения квантовой механики был ещё один учёный, глубоко проникший в природу света и материи. В конечном счёте он пришёл к противостоянию с начинавшим устанавливаться всеобщим признанием абстрактной природы квантового мира. Сыграв одну из главных ролей в развитии квантовой физики, все свои последние годы он спорил с её основателями. Однако в нашей истории он упомянут не поэтому, а потому, что первым обратил свой взор к небу и произвёл революцию в нашем понимании Вселенной. Имя этого учёного – Альберт Эйнштейн.

Как и Планк, Эйнштейн задумывался о фундаментальных основах Вселенной. Но он размышлял не об атомах и свете, которые заполняют её, а о пространстве и времени, в которых она существует. По мнению его предшественников, пространство и время остаются жесткими и неизменяемыми сущностями – сценой, на которой в согласии с универсальными законами движения разворачивается игра физических взаимодействий. Идеи Эйнштейна изменили эту картину. В его рассуждениях огромную роль сыграла прославившая его техника мысленного эксперимента – Gedankenexperiment. К 1905 году, который стал для Эйнштейна «годом чудес», его мысленные эксперименты сосредоточились на вопросах движения частиц света и восприятии этого движения различными наблюдателями[3].

Задолго до того, ещё в XVI веке, Галилей продемонстрировал относительность движения. Не существует эксперимента, который помог бы вам понять, сидите вы в кресле у себя дома или на корабле, идеально плавно скользящем по морской глади, если вы наблюдаете за броском мяча или полётом мухи. Наблюдающий за вами человек, находящийся относительно вас в движении, конечно, заметил бы это различие. Однако этому человеку не легче, нежели вам: он не может сказать, кто из вас двоих на самом деле движется! Если вам когда-нибудь при взгляде в зеркало заднего вида вашей машины казалось, что вы приближаетесь к автомобилю, догоняющему (на самом деле) вас, вы знаете, что такое относительность движения. Для Галилея относительным было любое движение – абсолютного покоя не существовало. Но Галилей ничего не знал о природе света. Ему, конечно, и в голову не могло бы прийти, что это знание так сильно изменит наше представление о движении.

Что такое свет? На этот вопрос в середине XIX века ответил шотландский физик Джеймс Клерк Максвелл. Отправными точками для Максвелла стали две на первый взгляд несопоставимые области явлений: электричество и магнетизм. Максвелл показал, что они внутренне едины и могут быть описаны четырьмя взаимосвязанными уравнениями, достаточно компактными, чтобы сейчас их можно было повсюду видеть на футболках любителей науки. У таких «ботаников» есть шутка: «Как только Максвелл записал свои знаменитые уравнения, бог сказал: “Да будет свет!”». Скрытый смысл этой остроты – в том, что уравнения Максвелла суть законы света.

Уравнения Максвелла оказались очень мощным научным инструментом. В небольшом наборе компактных формул поместилась вся природа электричества и магнетизма. Но Максвелл понимал: за математикой кроется нечто более глубокое. Уравнения описывали пространство, заполненное полями – электрическим и магнитным.

Именно через эти поля осуществлялась связь электрических зарядов и токов, притягивавшихся и отталкивавшихся силами электромагнетизма.

Максвелл понимал, что изменяющееся магнитное поле будет порождать электрическое, а изменяющееся электрическое поле, в свою очередь, порождает магнитное. В его уравнениях не было ничего, что требовало бы прекращения этих периодических изменений: в принципе, они могли бесконечно распространяться сквозь пустое пространство в виде волны. Максвелл решил проверить, насколько быстро движутся эти электромагнитные волны. К его удивлению, их скорость оказалась в точности равной скорости света: 299 792 458 метров в секунду. Из этого Максвелл заключил, что свет и есть электромагнитная волна.

Учёный сделал и другой вывод: кроме оптического излучения, улавливаемого нашим зрением, должны быть и другие, невидимые электромагнитные волны. Электромагнитная волна характеризуется длиной; наши глаза воспринимают волны длиной около 0,4 тысячных доли миллиметра – для нас это голубой цвет. Самые длинные волны, которые наши глаза могут чувствовать, примерно вдвое длиннее – это красный. Но по обе стороны от этого узкого промежутка длин волн, рассуждал Максвелл, должны быть и более короткие, и более длинные волны, невидимые для нас. В конце XIX столетия, когда Генрих Герц зарегистрировал радиоволны, а Вильгельм Рёнтген – коротковолновое излучение, которое было названо X-лучами или рентгеновским излучением, гипотеза Максвелла о существовании широкого спектра электромагнитных волн полностью подтвердилась[4].

Максвелловские уравнения электромагнетизма были крупнейшим научным успехом, но Эйнштейн искал большего. Он знал, что из математического описания электромагнитных волн вытекает огромная скорость их распространения в вакууме: 300 000 км/с! Однако здесь он встретился с затруднением: не было никаких указаний на то, относительно чего эта скорость измеряется. Другие физики предполагали, что пространство заполнено какой-то субстанцией, в которой, как в океане, распространяются электромагнитные волны. Это невидимое электромагнитное море они называли эфиром. Но эксперименты, которые один за другим изобретались для подтверждения присутствия эфира, неизменно кончались неудачей. Получалось, что электромагнитные волны распространяются в пустом пространстве.

Эйнштейн сделал гениальное предположение: скорость света измеряется относительно каждого отдельного человека или предмета, и каждый раз она равна одним и тем же 300 000 км/с. Это единственная абсолютная постоянная в мире, относительном во всех других смыслах. Но это было невозможно во Вселенной Ньютона, в которой все скорости были относительны и каждый должен был определять своё собственное значение скорости света. Естественно, если бы кто-то двигался вдоль светового луча лишь чуть-чуть медленнее 300 000 км/с, он видел бы почти неподвижные частички света на расстоянии дюйма от себя. Разве не так? Нет, отвечал Эйнштейн! Этот человек всё равно нашёл бы в результате своих измерений, что свет удаляется от него со скоростью 300 000 км/с.

Конечно, чтобы добиться такого результата, пришлось пожертвовать чем-то очень важным[5]. Жертвой стала концепция жёсткого и неизменяемого пространства и времени. Эти понятия пришлось отбросить и заменить чем-то более податливым. Следствием постоянства скорости света при измерении её любым наблюдателем стало то, что теперь часы каждого наблюдателя тикали с разной частотой, а все линейки имели разную длину. Наблюдатели больше не могли договориться ни о том, каково на деле расстояние между двумя точками, ни о том, сколько времени длится то или иное событие!

Опубликовав частную теорию относительности, Эйнштейн, казалось, полностью уничтожил фундамент физической Вселенной – и не остановился на этом.


Скачать книгу "Как появилась Вселенная? Большие и маленькие вопросы о космосе" - Герайнт Льюис бесплатно


100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Астрономия и Космос » Как появилась Вселенная? Большие и маленькие вопросы о космосе
Внимание