Как появилась Вселенная? Большие и маленькие вопросы о космосе

Герайнт Льюис
100
10
(1 голос)
0 0

Аннотация: Кванты – это сверхмалые частицы, кирпичики «всего», космос – это триллионы звёзд и постоянно расширяющихся галактик. Жизнь на необъятных просторах Вселенной неотделима от взаимодействий в масштабах кварков. Объединяя эти измерения, авторы книги – ученые-физики, ведут диалог в поисках ответов на самые фундаментальные вопросы науки:

Книга добавлена:
27-05-2024, 14:11
0
70
63
Как появилась Вселенная? Большие и маленькие вопросы о космосе
Содержание

Читать книгу "Как появилась Вселенная? Большие и маленькие вопросы о космосе"



Кто в космосе следит за своим весом

Когда наше Солнце станет белым карликом, оно будет состоять из электронного Ферми-газа с вкрапленными ядрами гелия и углерода. Этот остаток Солнца будет постепенно терять тепло и, остывая, превращаться в чёрного карлика.

У звёзд больше, чем Солнце, избыток массы создаёт большую силу гравитации, из-за чего белый карлик сжимается до ещё меньших размеров, а электроны тем самым оказываются вынужденными иметь ещё бóльшую энергию. Но здесь есть предел. Электроны не могут иметь такую кинетическую энергию, при которой их скорость превысит скорость света – предел скорости, накладываемый теорией относительности.

Физик Субраманьян Чандрасекар вычислил массу, соответствующую этой границе.[54] Предел Чандрасекара, как он теперь называется, составляет около 1,4 массы Солнца. Чтобы у ядра звезды оказалась такая масса, на стадии сжигания водорода она должна иметь массу около восьми Солнц. Судьба звёзд большего размера ещё необычнее.

При достаточно высоких гравитационных силах электроны в сердце умирающей звезды вдавливаются в близлежащие атомные ядра, где они реагируют с протонами. В ходе этого процесса, называемого захватом электронов, образуются нейтроны и нейтрино. Нейтрино тут же улетают, и остаётся звездный объект, состоящий только из нейтронов – нейтронная звезда. Но как такой объект сохраняет устойчивость в отсутствии вырожденного давления электронов?

Частично ответ точно такой же, каким он был для электронов: нейтроны тоже являются фермионами со спином ½. Однако они – не фундаментальные частицы, они могут быть разделены на меньшие части: каждый нейтрон состоит из трёх кварков. Так что ответ не сводится к вырожденному давлению нейтронов. В этой игре участвуют дополнительные ядерные силы, но какие – ещё не вполне понятно. Как всегда в науке, остаются тайны, которые ещё предстоит разгадать.

Недавние измерения массы нейтронной звезды методами гравитационно-волновой астрономии позволили оценить её примерно в две массы Солнца. По современным теориям получается, что у самых тяжёлых нейтронных звёзд масса может доходить до трёх солнечных – при превышении этого предела даже давление вырожденного вещества не спасёт звезду от гравитационного сжатия. Что же произойдёт, когда сила тяготения будет настолько велика, чтобы заставить нейтроны преодолеть известные релятивистские пределы? Образуются самые загадочные объекты космоса – чёрные дыры.

Прежде чем мы займёмся исследованием влияния квантовой механики на чёрные дыры, придётся кое в чём откровенно признаться. Мы начали этот раздел с обсуждения устойчивости чёрных карликов, холодных остатков мёртвых звёзд, которые, как мы предполагаем, в будущем заполнят всю Вселенную. Они не коллапсируют благодаря давлению вырожденного вещества, что объясняется законами квантовой физики и принципом запрета Паули. Электроны, как и все фермионы, просто не могут концентрироваться в одном и том же месте: можно всё сильнее и сильнее сжимать вещество, но давление вырожденного электронного газа будет сопротивляться сжатию. Похоже, наша грядущая Вселенная, заполненная мёртвыми звездными ядрами, состоящими из вырожденного вещества, будет очень странным местом.

Но на этом рассказ не кончается. Давление вырожденного вещества приобретёт огромное значение во Вселенной будущего, но его влияние заметно и на протяжении всей прошедшей истории космоса. Уже сейчас во Вселенной существует множество нейтронных звёзд, оставшихся от более ранних звёздных поколений, от звёзд, которые жили и умирали, причём многие – задолго до рождения Солнца.

В нашем рассказе есть ещё один, последний поворот. Мы уже говорили, что красные карлики – самые маленькие звёзды, с массами около одной десятой массы Солнца. Но почему нет звёзд ещё меньшего размера? В космосе множество газовых облаков, способных коллапсировать, гравитационное сжатие ведёт к разогреву их центральных областей, но по мере того как вещество становится всё плотнее и плотнее, давление вырожденного газа быстро начинает доминировать, сопротивляясь дальнейшему сжатию. Ядра этих мертворождённых звёзд никогда не становятся достаточно горячими и плотными, чтобы в них зажёгся очаг термоядерного синтеза. Эти «коричневые карлики» обречены вечно блуждать в космосе почти незаметными.

По сути, такая недоделанная звезда есть и в нашей Солнечной системе – это планета Юпитер. Она образовалась не совсем так, как коричневые карлики, но физика здесь та же самая. Плотность в недрах Юпитера примерно вдвое ниже плотности в центре Солнца, но температура ниже в 600 с лишним раз.

Эти условия недостаточно экстремальны для термоядерного горения, но дальнейший коллапс ядра Юпитера невозможен из-за эффектов квантовой механики.

Остановитесь и подумайте об этом, когда заметите великолепный Юпитер на холодном и ясном ночном небе.


Скачать книгу "Как появилась Вселенная? Большие и маленькие вопросы о космосе" - Герайнт Льюис бесплатно


100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Астрономия и Космос » Как появилась Вселенная? Большие и маленькие вопросы о космосе
Внимание