Как появилась Вселенная? Большие и маленькие вопросы о космосе

Герайнт Льюис
100
10
(1 голос)
0 0

Аннотация: Кванты – это сверхмалые частицы, кирпичики «всего», космос – это триллионы звёзд и постоянно расширяющихся галактик. Жизнь на необъятных просторах Вселенной неотделима от взаимодействий в масштабах кварков. Объединяя эти измерения, авторы книги – ученые-физики, ведут диалог в поисках ответов на самые фундаментальные вопросы науки:

Книга добавлена:
27-05-2024, 14:11
0
70
63
Как появилась Вселенная? Большие и маленькие вопросы о космосе
Содержание

Читать книгу "Как появилась Вселенная? Большие и маленькие вопросы о космосе"



Рецепт звёздного вещества

Чтобы понять, как это происходит, давайте мысленно испечём кекс. Смешаем 125 граммов масла, 200 граммов сахара, 2 яйца, полкило муки с разрыхлителем и 150 граммов молока. Выльем эту смесь в глубокую форму для кексов. Взвесим форму со смесью – выйдет примерно около килограмма. Поставим её на 45 минут в печь, предварительно нагретую до 180 °C. После того, как кекс остынет, снова взвесим форму с готовым кексом – получится около 850 г. Попробуйте (вкусно!) и задумайтесь, почему испечённый кекс весит меньше, чем смесь ингредиентов. Отвлечёмся при этом от восхитительного химического процесса выпекания – просто посчитаем. Если ингредиенты плюс форма весят 1 кг (1000 г), а готовый кекс плюс форма – 850 г, ясно, что не хватает примерно 150 г. Но куда же они делись? Надо разобраться.

В состав ингредиентов входят жидкости, а готовый кекс сухой (не совсем, конечно!) И хотя вода не входила в список наших ингредиентов, её хватало в масле, яйцах и молоке.

Вода испаряется внутри горячей сухой печи, и мы предполагаем, что потерянный вес – это испарившаяся вода. Если бы вы сумели уловить весь воздух, который выходит из печи при её вентиляции, и охладить его, сконденсировавшийся при этом водяной пар снова превратился бы в жидкую воду, и вы получили бы потерянные 150 г. Тайна раскрыта! Но погодите. При чём же здесь сверхновые и вообще физика? Мы уже упоминали важную концепцию, лежащую в основе обсуждаемых процессов: сохранение. В случае с кексом нас интересовало сохранение массы. В большинстве ежедневных ситуаций она никогда не образуется из ничего и не исчезает. При помощи этого закона сохранения и несложной арифметики вы всегда найдёте, куда девался «пропавший» вес.

В начале 1930-х ингредиенты пропадали в физическом варианте задачи о выпечке кекса – при ядерных реакциях. Вспомним, что давным-давно, на ранних стадиях истории Вселенной (и в начале этой книги!) свободный нейтрон мог распадаться, превращаясь в протон. Обратное преображение, однако, невозможно, именно поэтому даже сегодня протонов больше, чем нейтронов. Но что-то не складывается. У нейтрона заряда нет, в то время как протон несёт положительный заряд. Выходит, переход нейтрона в протон нарушает сохранение заряда. Чтобы уравновесить нейтральность нейтрона, вместе с протоном должен образовываться и электрон – это и происходит.

В этом, впрочем, никто и не сомневался: добавочный электрон был первым, что бросалось в глаза в такой реакции. Хронологически история развивалась в обратном порядке.[45] Сначала при исследовании явления радиоактивности открыли электрон. В этой разновидности радиоактивности протон остаётся в ядре атома, а электрон испускается – явление регистрируется в множестве экспериментов. При этом можно измерить много параметров электрона, и было сразу очевидно, что вопросы возникают не только по поводу заряда. К примеру, масса и энергия исходного нейтрона были больше, чем суммарные масса и энергия результирующих протона и электрона. Как и в случае с водой, испарившейся в печи, чего-то недоставало.

Физик Вольфганг Паули первым предположил, что энергию могла уносить другая частица. Так как заряд всё же сохранялся, эта новая частица должна была быть нейтральной. Приходилось также предположить, что у неё очень малая масса или вообще нет массы, как у фотона, частицы света. Другой физик, Энрико Ферми, назвал загадочную частицу «маленьким нейтрончиком» – по-итальянски нейтрино.

Так применение законов сохранения позволило предсказать новую гипотетическую частицу задолго до её экспериментальной регистрации в 1953 году и за много лет до завершения ныне общепризнанной стандартной модели, на которой основывается физика частиц. Фредерик Райнес и Клайд Коуэн из Национальной лаборатории в Лос-Аламосе в штате Нью Мексико построили детектор нейтрино, вмещавший 300 литров воды (они выбрали её потому, что она обладает достаточной плотностью, нетоксична и легкодоступна).[46] Когда нейтрино сталкивается с молекулой воды, детектор регистрирует вспышку гамма-лучей. В действительности Райнес и Коуэн регистрировали также и антинейтрино. Позже был найден целый ряд других типов этой частицы, по-английски называемых ароматами (flavors). В стандартной модели различают три типа нейтрино и, разумеется, столько же антинейтрино.

Напомним: стандартная модель – одно из величайших достижений науки. На первый взгляд она, со своим забавным жаргоном, со всеми этими фермионами и бозонами, кварками и электронами, может показаться чересчур запутанной, но на деле невероятно ёмко и лаконично суммирует всё или почти всё, что мы знаем о физике. Нет никакой альтернативы, которая лучше справлялась бы с предсказаниями явлений в зоопарке разнообразных частиц и сил, находящемся на фундаментальных уровнях Вселенной. Эта теория остаётся лучшей из тех, которыми мы располагаем, хотя мы знаем, что в ней ещё много слабых мест (об этом позже). Её итог на сегодня: есть 12 фундаментальных частиц, из которых состоит материя. Три из них – нейтрино. У каждого вида частиц свои уникальные характеристики, но только нейтрино взаимодействуют исключительно посредством слабых ядерных сил и гравитации.

Гравитация – самая слабая из всех четырёх фундаментальных сил, а масса нейтрино, насколько нам известно, невероятно мала. Таким образом, нейтрино наименее подвержены влиянию гравитации: её воздействием мы здесь вполне можем пренебречь. Слабое ядерное взаимодействие, как и сильное взаимодействие между протонами и нейтронами, действует на очень малых масштабах. Сопоставляя всё это, мы можем заключить, что нейтрино обычно проходит огромные расстояния, прежде чем по счастливому стечению обстоятельств угодит в другую частицу. Поэтому физики между собой часто называют её частицей-призраком.

Казалось бы, для учёного, который пытается зарегистрировать нейтрино, всё это должно звучать приговором, но есть и обнадёживающее обстоятельство: каждую секунду сквозь тело человека проходит около 100 триллионов этих крохотных частиц. За ту же самую секунду сквозь него пролетает и около 100 высокоэнергетических тяжелых частиц из космоса, известных как космические лучи. Они могут быть потенциальной причиной рака, так как наносят заметный ущерб молекулам ДНК. К счастью, нейтрино, с их микроскопически малой вероятностью взаимодействия, проходят сквозь нас, не причиняя никакого вреда.


Скачать книгу "Как появилась Вселенная? Большие и маленькие вопросы о космосе" - Герайнт Льюис бесплатно


100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Астрономия и Космос » Как появилась Вселенная? Большие и маленькие вопросы о космосе
Внимание