Покоренная плазма

Борис Фомин
100
10
(1 голос)
0 0

Аннотация: Есть ли что-либо общее между гигантским шаром Солнца и электрической искоркой, проскочившей в выключателе? Между молнией и ртутной лампой? Между северным сиянием и светящимися трубками реклам? Оказывается, есть. И Солнце, и молния, и светящиеся трубки, и северное сияние — все это плазма, четвертое состояние вещества. В книге «Покоренная плазма» в доступной форме рассказано о плазме, встречающейся в природе и созданной человеком, об ученых, покоряющих плазму, о том, как и где применяется плазма в науке, технике, медицине, в быту. Юный читатель узнает из книги, что важнейшие проблемы современной науки — управляемые термоядерные реакции, непосредственное преобразование тепла в ток, квантовые генераторы, создающие лучи невиданной мощности, — решаются на основе использования плазмы.

Книга добавлена:
1-03-2023, 00:43
0
349
71
Покоренная плазма
Содержание

Читать книгу "Покоренная плазма"



Всегда ли справедлив закон Ома?

То, что плазма не обычный газ, а особое состояние вещества, хорошо подтверждается изучением не только структуры плазмы, но и ее поведения.

Я уже говорил о том, что плазма, в отличие от газа, небезразлична к магнитным силам.

Газ — непроводящая среда, и в него магнитное поле проникает свободно. Плазма — проводник тока, поэтому она является преградой для магнитных силовых линий. Почему?

Электромагнитная теория гласит, что магнитное поле способно производить давление на окружающую среду. Это давление пропорционально квадрату силы поля. Предположим, что с помощью мощного электромагнита мы создали магнитное поле. Оно давит на окружающую среду с определенной силой. Если увеличить ток через катушку электромагнита таким образом, чтобы магнитных силовых линий стало в два раза больше, то это новое поле будет давить не в два, а в четыре раза сильнее. На газ магнитное давление не действует, а на плазму оно влияет. Плазма, как и металлический экран, не хочет пускать в себя магнитные силовые линии.

Благодаря этому плазму можно сжимать магнитным полем, удерживать «стеной» из магнитных силовых линий и выталкивать магнитными силами, словно поршнем.

Специфичность плазмы как особого состояния вещества может быть проиллюстрирована еще одним очень важным фактом.

Зажжем разряд в той же самой трубке и таким же способом, как это делали мы выше, когда впервые знакомились с плазмой. Тогда в схеме были включены амперметр, который фиксировал ток через трубку, и вольтметр. Последний включали параллельно разрядной трубке, чтобы знать её напряжение при протекании тока (см. рисунок на стр. 21).

Когда известна величина тока и напряжения, то считают, что известно почти все.

Действительно, в обычной электрической цепи ток и напряжение зависят друг от друга.

Увеличишь в два раза напряжение, приложенное к электрической цепи, и ток во столько же раз увеличится. Уменьшишь — все получается наоборот.

Такие «взаимоотношения» между током и напряжением объясняются хорошо известным вам законом Ома.

Вот он: I = V/R,

где I — сила тока в амперах, V — напряжение в вольтах, R — сопротивление в омах.

Значит, чтобы численно определить силу тока, протекающего по электрической цепи, нужно напряжение на данном участке разделить на сопротивление этого участка.

Чтобы вам лучше понять, почему вдруг я заговорил о законе Ома, я расскажу один случай, который произошел в лаборатории Московского университета, где я работал.

Туда ко мне пришел школьник-восьмиклассник и с восхищением стал рассматривать разрядные трубки, светящиеся всевозможными цветами. В трубках была плазма.

Я рассказал школьнику, что такое плазма, объяснил назначение приборов, с помощью которых она исследуется, и показал различные виды разрядов.

Юный поклонник физики попросил меня продемонстрировать какой-нибудь опыт с плазмой. Я подвел его к лабораторному столу. Минут через десять для опыта все было готово: разрядную трубку укрепили на двух подставках посредине стола. От нее тянулся толстый резиновый шланг к откачивающему насосу, провода в хорошей изоляции шли от источника высокого напряжения к электродам трубки и к приборам.

— Что мы будем делать? — нетерпеливо спросил гость.

— Проверим закон Ома, — спокойно ответил я.

Школьник удивился. Действительно, какая нужда проверять то, что уже тысячи раз проверено и считается законом физики.

Я включил источник тока, питающего разрядную трубку. Потом дал поработать откачивающему насосу.

Когда внутри трубки вспыхнуло бледноватое свечение плазмы, я попросил школьника записать показания приборов — амперметра и вольтметра.

Потом я спросил его:

— Если увеличить ток через трубку, скажем, раза в полтора, что произойдет с напряжением? Что покажет вольтметр?

Школьник подумал, посмотрел на выписанную формулу закона Ома и уверенно ответил:

— Вольтметр покажет напряжение тоже в полтора раза больше. Этого требует закон Ома.

— Что же, посмотрим!

Я повернул ручку на панели источника питания. Трубка засветилась ярче. Стрелка амперметра отметила увеличение тока.

А вольтметр? Вопреки предсказанию, он стал показывать меньшее напряжение. Я еще больше увеличил ток через разрядную трубку, но вольтметр никак не хотел «исправляться» — он показал еще меньшее напряжение.

— Может, прибор неисправный? — спросил меня мальчик, который никак не хотел верить в это «чудо».

Мысленно я похвалил его: всегда, когда исследователь получает неожиданные результаты, он первым делом должен проверить измерительную схему и убедиться в правильности показаний приборов. Не говоря ни слова, я достал из стоящего рядом шкафа картонную коробку с болтающейся на нитке пломбой.

Вот новый прибор, заменим…

Опыт был повторен. Однако и новый прибор не оправдал надежд. Стрелка его упорно сигнализировала об уменьшении напряжения, тогда как закон Ома требовал, чтобы оно с увеличением тока росло.

Дело было в чем-то другом, и мой гость чувствовал это.

А «секрет» весь заключался в плазме, образовавшейся в трубке. Убедиться в этом было легко. Достаточно вместо разрядной трубки включить обыкновенное сопротивление, например реостат, и вольтметр добросовестно стал бы показывать увеличение напряжения с ростом тока. Значит, «карты путала» плазма. Она не хотела подчиняться закону Ома. Почему?

Вспомним, как возникает ток в газе.

Редкие одиночки электроны, подхваченные силами электрического поля, разгоняются и, наскакивая на молекулы газа, выбивают из них электроны. Те, в свою очередь, ионизируют другие молекулы. Возникает лавина электронов — ток резко увеличивается. В трубке возникает плазма.

Увеличив ток, мы заставили больше электронов в каждую секунду проходить через амперметр и другие звенья электрической цепи.

Что в этом случае произошло в трубке?

Возросшие электрические силы родили новые лавины электронов и создали новый «отряд» положительных ионов. Число зарядов — носителей электричества — в трубке резко возросло, в связи с чем сопротивление трубки току упало. А раз так, и напряжение, которое мы измеряли между электродами трубки, стало меньше.

Имей разрядная трубка постоянное число электрических зарядов, такого несоответствия между током и напряжением мы бы не наблюдали.

Поведение плазмы в разрядной трубке, которое сбило с толку знакомого мне восьмиклассника, конечно, не должно вызывать сомнения в правильности закона Ома. Закон этот универсален, он справедлив и для плазмы. Только пользоваться им нужно осторожно, иначе не избежать ошибки.

К плазме, хотя она и проводит ток, нельзя подходить с той же меркой, с какой мы подходим к обыкновенному металлическому проводнику. Ее поведение, свойства, характеристики зависят от режима электрического разряда, который определяется и давлением газа в трубке, и величиной приложенного напряжения, и тем, в каком газе осуществляется разряд. Физики скрупулезно взвешивают все эти факторы и могут рассчитать величину тока, напряжения и другие характеристики плазмы при разных режимах разряда.

Попутно нужно отметить, что в последние годы удалось сделать такие разрядные трубки, в которых устанавливается так называемый квазистационарный разряд, который протекает в полном соответствии с законом Ома. Жгут плазмы в этих трубках можно рассчитывать так же, как рассчитывается спираль обыкновенной электроплитки.

Я нарисовал грубую, схематичную картину того, что происходит в разрядной трубке при изменении силы тока. В действительности физические явления в ней значительно сложней. Но и того, что я рассказал, достаточно для объяснения странного поведения приборов во время нашего опыта.

Нежелание плазмы всегда подчиняться закону Ома — это еще одно свидетельство того, что плазма — особое состояние вещества. Законы возникновения плазмы, законы, которые объясняют ее поведение в различных условиях, очень сложны. Ученые разных стран потратили десятилетия на то, чтобы их расшифровать. Работа эта продолжается и сейчас. Современная теория строения микромира — мощное оружие в руках ученых. Именно она позволяет «раскусить твердый орешек», каким является плазма, объяснить многоликость ее существования.

Но прежде чем рассказывать о разных формах существования плазмы, посмотрим, где встречается плазма, каково ее место среди других состояний вещества.


Скачать книгу "Покоренная плазма" - Борис Фомин бесплатно


100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Физика » Покоренная плазма
Внимание