Интернет-журнал "Домашняя лаборатория", 2008 №1

Журнал «Домашняя
100
10
(1 голос)
0 0

Аннотация: Интернет-журнал колхозников, инженеров и разнорабочих науки. Журнал содержит материалы найденные в Интернет или написанные для Интернет и является полностью некоммерческим.

Книга добавлена:
14-12-2023, 08:58
0
185
152
Интернет-журнал "Домашняя лаборатория", 2008 №1
Содержание

Читать книгу "Интернет-журнал "Домашняя лаборатория", 2008 №1"



Встречается несколько разновидностей В. braunii, отличающихся пигментацией и структурой синтезируемых углеводородов. Зеленая разновидность содержит линейные углеводороды с нечетным (25–31) числом атомов углерода, бедных двойными связями. Красная водоросль содержит углеводороды с 34–38 атомами углерода и несколькими двойными связями; это так называемые "ботриококкцены". Смысл существования двух разновидностей в настоящее время изучается. Углеводороды накапливаются в клеточной стенке, их синтез связан с метаболической активностью водоросли в фазе роста. Выход углеводородов при создании оптимальных условий культивирования может достигать 60 т/га*год для культуры водорослей, выращиваемой в толще воды в природных или искусственных условиях. Для определения перспективности использования В. braunii необходимо провести следующие исследования:

— определить условия, обеспечивающие максимальную скорость роста и образования углеводов в лабораторных и полевых условиях;

— выяснить, можно ли добиться скорости роста В. braunii, сопоставимой с известной для других водорослей;

— разработать соответствующие методы выращивания, сбора и переработки;

— оценить применимость получаемого продукта как альтернативного источника топлива и смазочных веществ. Исследования, связанные с выделением и возможностью утилизации углеводородов В. braunii, могут также способствовать лучшему пониманию вопроса о происхождении нефти.

Биотехнология обработки стоков и контроль загрязнения воды тяжелыми металлами

Развитие промышленности ведет к образованию большого количества отходов, в том числе отходов, содержащих новые антропогенные компоненты. Методами биотехнологии эти отходы могут быть переработаны в полезные или безвредные продукты.

Бытовые отходы делятся на 2 группы: твердые отходы и сточные воды.

Твердые бытовые отходы состоят из целлюлозосодержащих материалов (до 40 % бумаги, 2.5 % дерева, 8 % текстиля) и пищевых отходов (40 %). Наиболее экономична и радикальна переработка их метановым брожением, в результате образуется легко транспортируемое топливо — метан.

Сточные воды обычно содержат сложную смесь нерастворимых и растворимых компонентов различной природы и концентрации. Бытовые отходы, как правило, содержат почвенную и кишечную микрофлору, включая патогенные микроорганизмы.

Сточные воды сахарных, крахмальных, пивных и дрожжевых заводов, мясокомбинатов содержат в больших количествах углеводы, белки и жиры, являющиеся источниками питательных веществ и энергии.

Стоки химических и металлургических производств могут содержать значительное количество токсических и даже взрывчатых веществ. Серьезное загрязнение возникает при попадании в окружающую среду соединений тяжелых металлов, таких как железо, медь, олово и др.

Цель очистки сточных вод — удаление растворимых и нерастворимых компонентов, элиминирование патогенных микроорганизмов и проведение детоксикации таким образом, чтобы компоненты стоков не вредили человеку, не загрязняли водоемы. Бактерии рода Pseudomonas практически всеядны. Например, P. putida могут утилизировать нафталин, толуол, алканы, камфару и др. соединения. Выделены чистые культуры микроорганизмов, способные разлагать специфические фенольные соединения, компоненты нефти в загрязненных водах и т. д. Микроорганизмы рода Pseudomonas могут утилизировать и необычные химические соединения — инсектициды, гербициды и другие ксенобиотики. Генетически сконструированные штаммы микроорганизмов в будущем смогут решить проблему очистки сточных вод и почв, загрязненных пестицидами и другими антропогенными веществами.

Азотсодержащие соединения (белки, аминокислоты, мочевина) могут быть удалены в биологическом процессе денитрификации-нитрификации. Биологическое удаление азота и фосфора, являющихся причинами эвтрофикации (зарастания озер микроводорослями, которые бурно размножаются, затем отмирают, давая пищу аэробным бактериям, потребляющими кислород, что приводит к замору рыбы) озер и каналов, находится в стадии экспериментов.

Тяжелые металлы затрудняют биологические процессы очистки стоков и отрицательно влияют на флору и фауну. Природные штаммы микроорганизмов не могут быть использованы для накопления этих металлов в силу их высоко токсичности. Однако, есть белок высших организмов — металлотионеин, который активно связывает различные тяжелые металлы. Ген, кодирующий синтез мышиного металлотионеина, клонирован в бактериях. Это открывает возможность получения белка в больших количествах с использование иммобилизованных бактерий и его использования для связывания и экстракции тяжелых металлов.

Сельскохозяйственная биотехнология

Биологическая азотфиксация — процесс фиксации атмосферного азота бактериями, живущими в симбиозе с представителями семейства бобовых. Для ускорения заселения ризосферы обычно используют бактериальные удобрения, содержащие культуры азотфиксирующих микроорганизмов, например, клубеньковых бактерий. Методами генной инженерии выведены мутанты клубеньковых бактерий с повышенной способностью к азотфиксации. Ведутся работы по созданию азотфиксирующих растений, способных к симбиозу со злаковыми.

Микробные инсектициды. В последнее время все чаще появляются данные о мутагенном и канцерогенном действии химических пестицидов, которые плохо разрушаются и накапливаются в окружающей среде.

Для получения микробных инсектицидов используются вирусы, грибы, простейшие, наиболее удобны — спорообразующие бактерии. Микробные инсектициды высоко специфичны и действуют только на определенные вредные насекомые, оставляя невредимыми полезные. Патогенность микроорганизмов вызвана действием определенных токсинов, поэтому выработки устойчивости к биопрепаратам у насекомых не происходит.

Микробные пестициды подвержены биодеградации. Микроорганизмы могут регулировать рост растений и животных, подавлять заболевания. Некоторые бактерии изменяют кислотность и соленость почвы, другие продуцируют соединения, связывающие железо, третьи — вырабатывают регуляторы роста. Как правило, микроорганизмами инокулируют семена и или растения перед посадкой.

В животноводстве биотехнология также находит применение. Это диагностика, профилактика, лечение заболеваний с использованием техники моноклональных антител, генетическое улучшение пород животных. Некоторые вещества, полученные с помощью микроорганизмов могут использоваться в виде кормовых добавок, другие — подавляют вредную микрофлору в желудочно-кишечном тракте или стимулируют образование специфических микробных метаболитов.

Подробнее вопросы бактериальных удобрений и энтомопатогенных препаратов для сельского хозяйства рассматриваются в главе: "Биотехнология препаратов для сельского хозяйства", а генно-инженерных модификаций сельскохозяйственных растений и животных в разделе "трансгенные животные".

Биогеотехнология

Некоторые микроорганизмы могут катализировать определенные окислительно-восстановительные реакции — окисление Fe и Мn в воде, окисление серосодержащих соединений, окисление-восстановление азотсодержащих соединений. Аэробные бактерии могут выделять железо, медь, сульфаты.

Биогеотехнология — использование геохимической деятельности микроорганизмов в горнодобывающей промышленности. Это экстракция и концентрирование металлов при биологической очистке сточных вод предприятий горнодобывающей промышленности и флотационных процессах: выщелачивание бедных и отработанных руд, десульфирование каменного угля, окисление пиритов и пиритсодержащих пород.

Своими корнями биогеотехнология уходит в геологическую микробиологию. Микроорганизмы принимали и принимают активное участие в геологических процессах. Биологические свойства различных групп микроорганизмов и особенности их жизнедеятельности в месторождениях полезных ископаемых составляют научные основы биогеотехнологии.

Биогеотехнология стихийно зародилась еще в XVI в. До нас дошли сведения о том, что в те далекие времена в Венгрии для получения меди груды добытой руды орошали водой. Этот нехитрый технологический прием оказался прообразом современного бактериально-химического метода кучного выщелачивания металлов из руд. Конечно, тогда еще не знали, что используемый процесс получения меди по своей природе является микробиологическим. Это стало известно только в 1922 г. благодаря работам немецких ученых Рудольфа и Хельброннера. По-видимому, 1922 г. следует считать официальной датой рождения биогеотехнологии. В дальнейшем биогеотехнология развивалась неровно и своего совершеннолетия достигла к началу 80-х годов нашего века. К этому времени наряду с бактериальным выщелачиванием металлов сформировались и другие разделы биогеотехнологии — удаление серы из углей, борьба с метаном в угольных шахтах, повышение нефтеотдачи пластов.

Биогеотехнология выщелачивания металлов — использование главным образом тионовых (окисляющих серу и серосодержащие соединения) бактерий для извлечения металлов из руд, рудных концентратов и горных пород. При переработке бедных и сложных руд тысячи и даже миллионы тонн ценных металлов теряются в виде отходов, шлаков, «хвостов». Происходят также выбросы вредных газов в атмосферу. Бактериально-химическое выщелачивание металлов уменьшает эти потери. Основу этого процесса составляет окисление содержащихся в рудах сульфидных минералов тионовыми бактериями. Окисляются сульфиды меди, железа, цинка, олова, кадмия и т. д. При этом металлы из нерастворимой сульфидной формы переходят в сульфаты, хорошо растворимые в воде. Из сульфатных растворов металлы извлекаются путем осаждения, экстракции, сорбции. Одним из возможных путей извлечения металлов из растворов является адсорбция металлов клетками живых микроорганизмов, так называемая биосорбция металлов. Металлы включаются в состав специфических белков — металлотионеинов. Полезными для биогеотехнологии добычи металлов свойствами обладает целый ряд микроорганизмов. Но основным из них, безусловно, является открытый в 1947 г. Колмером и Кинкелем вид тионовых бактерий, названный Thiobacillus ferrooxidans. Необходимую для роста энергию эти бактерии получают при окислении восстановленных соединений серы и двухвалентного железа в присутствии свободного кислорода. Они окисляют практически все известные в настоящее время сульфиды металлов. Источником углерода для роста бактерий служит при этом углекислый газ. Характерной особенностью их физиологии является потребность в очень кислой среде. Они развиваются при pH от 1 до 4,8 с оптимумом при 2–3. Интервал температур, в котором могут развиваться бактерии этого вида, составляет от 3 до 40 °C с оптимумом при 28 °C. Тионовые бактерии широко распространены в природе. Они обитают в водоемах, почвах, угольных и золоторудных месторождениях. В значительных количествах встречаются они в месторождениях серных и сульфидных руд. Но в условиях естественного залегания таких руд активность тионовых бактерий сдерживается отсутствием кислорода. При разработке сульфидных месторождений руды вступают в контакт с воздухом, и в них развиваются микробиологические процессы, приводящие к выщелачиванию металлов. Применяя определенные биотехнологические мероприятия, этот естественный процесс можно ускорить.


Скачать книгу "Интернет-журнал "Домашняя лаборатория", 2008 №1" - Журнал «Домашняя лаборатория» бесплатно


100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Газеты и журналы » Интернет-журнал "Домашняя лаборатория", 2008 №1
Внимание