Интернет-журнал "Домашняя лаборатория", 2008 №1

Журнал «Домашняя
100
10
(1 голос)
0 0

Аннотация: Интернет-журнал колхозников, инженеров и разнорабочих науки. Журнал содержит материалы найденные в Интернет или написанные для Интернет и является полностью некоммерческим.

Книга добавлена:
14-12-2023, 08:58
0
177
152
Интернет-журнал "Домашняя лаборатория", 2008 №1
Содержание

Читать книгу "Интернет-журнал "Домашняя лаборатория", 2008 №1"



БЕСКЛЕТОЧНЫЕ СИСТЕМЫ


Мембраны хлоропластов

Американский ученый М. Кальвин, чьи исследования в области изучения механизма фотосинтеза были отмечены Нобелевской премией, в 1972 году выдвинул идею создания фотоэлемента, в котором в качестве источника электрического тока служили мембраны хлоропластов. Основной компонент таких мембран — хлорофилл, способный при освещении отдавать и принимать электроны. В качестве проводника, контактирующего с хлорофиллом, Кальвин использовал оксид цинка. Мембраны, содержащие хлорофилл, помещали в раствор ферментов, действующих как катализаторы ЭТЦ. На свету происходит фотолиз воды: Н2O —> Н2 + 1/2 O2. При освещении этой системы в ней также возникал электрический ток плотностью 0,1 мкА на см2. Такой фотоэлемент функционировал недолго, поскольку хлорофилл вскоре терял способность отдавать электроны. Для того чтобы продлить время действия фотоэлемента, был использован дополнительный источник электронов — гидрохинон. В такой системе хлорофилл отдавал не только свои электроны, но и электроны гидрохинона. Полученный таким образом фотоэлемент площадью 10 м2 может обладать мощностью 1 кВт.

Японский ученый Фудзио Такахаси для получения электроэнергии использовал хлоропласты из листьев салата. Транзисторный приемник, к которому была присоединена такая солнечная батарейка, успешно работал.

Если из системы убрать проводник и индуцировать образование водорода и кислорода, то система может служить также прототипом фотореактора, при помощи которого энергия Солнца запасается в ценном топливе — водороде.

Преимущества системы:

— наличие избытка субстрата — воды,

— нелимитируемый источник энергии — Солнце,

— продукт (водород) можно хранить, не загрязняя атмосферу,

— продукт имеет высокую теплотворную способность (29 ккал/г) по сравнению с углеводородами (3,5 ккал/г),

— процесс протекает при нормальной температуре без образования промежуточных токсических веществ,

— процесс циклический, так как при окислении продукта образуется субстрат — вода.

Мембраны хлоропластов можно иммобилизовать, закрепляя их в геле.

Получение фотогальванических элементов с использованием бактериальных мембран

Другой механизм превращения энергии существует у галофильных бактерий. Halobacterium halobium используют энергию света, поглощаемую пурпурным пигментом бактериородопсином, находящимся в мембране клеток. Этот белок с необычными свойствами был выделен и описан в 1973 году У. Стохениусом и Д. Остерхельтом. С его помощью бактерии улавливают энергию Солнца. Поглощение света вызывает химические и физические превращения в молекуле пигмента, приводящие к переносу протонов с одной стороны мембраны на другую, при этом создаётся электрохимический градиент. Разность потенциалов может быть использована для генерирования электрического тока.

Бактериородопсин несложно выделить из бактерий. Для этого бактерии помещают в воду, где они переполняются водой[72] и лопаются. Мембраны, содержащие бактериородопсин, не разрушаются в воде из-за прочной упаковки молекул пигмента, которые образуют белковые кристаллы — так называемые фиолетовые бляшки. В них молекулы бактериородопсина объединены в триады, а триады — в правильные шестиугольники. Бляшки крупные, легко отделяются центрифугированием. После промывания осадка получается паста фиолетового цвета. На 75 % она состоит из бактериородопсина и на 25 % из фосфолипидов, заполняющих промежутки между белковыми молекулами.

Бактериородопсин устойчив к факторам внешней среды: не утрачивает активность при нагревании до 100 °C, хранится в холодильнике годами, устойчив к кислотам и химическим окисляющим агентам. Устойчивы и фосфолипиды фиолетовых бляшек.

H.halobium можно культивировать в водоемах с высокой концентрацией хлористого натрия и других минеральных солей. Из 10 литров бактериальной культуры получают 0,5 грамма мембран, содержащих 100000 молекул пигмента. Бактериородопсин осаждают с помощью катионов кальция или другим способом. Пигмент можно фиксировать на подложках, обладающих физическими и химическими свойствами для транспорта протонов, и создавать на их основе системы, генерирующие электрический ток. При освещении таких систем на мембране обнаруживается электрический потенциал, то есть бактериородопсин функционирует как генератор электрического тока. В лаборатории В. П. Скулачева были созданы фотогальванические элементы для генерирования тока силой 800 мкА. В них применялись мембранные фильтры, пропитанные фосфолипидами с бактериородопсином и хлорофиллом. Такие фильтры, соединенные последовательно, могут служит в качестве электрической батареи.

Бесклеточные белоксинтезирующие системы (ББСС)

ББСС используются для изучения матричной активности иРНК и анализа транслируемых с них полипептидов. В их состав входят: рибосомы, матрица (искусственная или природная РНК), белковые факторы трансляции, аминоацил т-РНК, АТФ, одновалентные и двухвалентные катионы (К, Са), буферный раствор для поддрежания гомеостаза, аминокислоты. В генной инженерии бесклеточные белоксинтезирующие системы используются для исследования кодирующего потенциала и механизмов экспрессии клонированных генов in vitro, и на промежуточных этапах конструирования рекомбинантных генов для идентификации мРНК или фрагментов ДНК по кодируемым белкам.

По происхождению компонентов ББСС можно классифицировать как прокариотические и эукариотические. Наиболее распространенные прокариотические белоксинтезирующие системы — на основе экстрактов из кишечной палочки (E.coli). Из эукариотических белоксинтезирующих систем для трансляции матриц эукариот применяют 2 основные системы: из ретикулоцитов кролика и из зародышей пшеницы. Эти системы являются универсальными, в них можно транслировать любые матрицы.

Для проведения анализа готовят реакционную смесь, состоящую из ретикулоцитного лизата или экстракта зародышей и смеси аминокислот, меченых аминокислот, АТФ, буфера, матричной РНК и других компонентов. Смесь инкубируют, после чего проверяют включение метки во вновь синтезированные белки (по радиоактивности) и тестируют белки с помощью электрофореза.

Трансляция in vitro полезна при уточнении роли отдельных компонентов системы синтеза белка, так как их можно удалять и добавлять по мере необходимости. Ее использование помогает при расшифровке генетического кода. В некоторых бесклеточных системах транслируют предварительно очищенную мРНК или используют эндогенную мРНК, присутствующую в полисомах. В других белоксинтезирующих системах — системах сопряженной транскрипции и трансляции, — синтез мРНК и ее трансляция рибосомами идут одновременно. В качестве матричной РНК также используются искусственные полинуклеотиды известного состава. В настоящее время механизмы трансляции in vitro применяются и для определения механизмов распределения белка по различным внутренним компартаментам. Подробнее можно почитать здесь: бесклеточные системы синтеза белка.


Скачать книгу "Интернет-журнал "Домашняя лаборатория", 2008 №1" - Журнал «Домашняя лаборатория» бесплатно


100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Газеты и журналы » Интернет-журнал "Домашняя лаборатория", 2008 №1
Внимание