Вторник. Седьмое мая: Рассказ об одном изобретении[3-е издание]

Юрий Вебер
100
10
(1 голос)
0 0

Аннотация: Книга об изобретателе радио А. С. Попове.

Книга добавлена:
21-01-2023, 16:55
0
185
62
Вторник. Седьмое мая: Рассказ об одном изобретении[3-е издание]

Читать книгу "Вторник. Седьмое мая: Рассказ об одном изобретении[3-е издание]"



«Теория Максвелла — это система уравнений Максвелла».

Казалось бы, ряды сухих, мертвых значков. Разве им сравниться с живой силой наглядных физических представлений, где играют заряды и токи, скорости и силовые линии!.. Но тому, кто способен слышать язык математики, ряды этих значков, интегралов и дифференциалов открывают очень многое. Недаром один из величайших ученых говорил с восторгом:

«Нельзя изучать эту чудесную теорию без того, чтобы порой не возникало ощущение, что математическим формулам присуща самостоятельная жизнь и собственный разум, что они умнее нас, умнее даже открывшего их, что они дают больше, чем в них было ранее вложено».

Так и оказалось. Уравнения, которые Максвелл сам же вывел, сказали ему значительно больше, чем он от них ожидал. Уравнения показали ему, что в природе должны существовать при известных условиях электромагнитные волны. Невидимые волны, как будто никак не ощутимые; но все же волны. Вычисления говорили также о том, что такие волны должны распространяться в пространстве, «от точки к точке», как еще предполагал Фарадей, и что бегут они с определенной, конечной скоростью. А дальше Максвелл вычислил, что их скорость должна быть близка или равна скорости света. Гениальные догадки, зародившиеся в фарадеевских исследованиях, нашли себе столь же гениальное математическое подтверждение.

Из этой музыки символических знаков у Максвелла сложился последний и самый внушительный аккорд его теории. Свет и электричество имеют одинаковую природу. Свет порождается колебаниями той же среды, которая вызывает электрические и магнитные явления. «Свет является электромагнитным возмущением, распространяющимся через поле в соответствии с электромагнитными законами», — делает Максвелл главный вывод из своих вычислений. Новая теория приобретает законченную форму. Электромагнитная теория света.

Но то, что было ясно для Максвелла, открывалось еще далеко не всем. Не всем были доступны его формулы. И далеко не всех они убеждали, даже тех, кто смог проникнуть в их смысл. В самом деле, ведь это были только голые вычисления, не имеющие пока никаких реальных, ощутимых подтверждений. Как признать, например, эти странные электромагнитные волны, как поверить в их реальность, когда их никто еще не улавливал, не получал и когда они существуют только на бумаге в максвелловских значках?

Ученый мир не спешил с признанием повой теории. И многие искали, как бы ее опровергнуть, а не как ее подтвердить. Теория оставалась пока лишь очень изящной тонкой новинкой, но вовсе ни для кого не обязательной.

Лишь кое-где, на отдельных островках науки, пробивались с трудом, медленно семена новой теории. Редкие физики имели мужество одолевать ее математический частокол. И постараться увидеть за ней скрытые горизонты. Как одинокие рыцари, сражались за нее на кафедрах некоторых университетов первые последователи и поклонники.

Наиболее рьяным рыцарем фарадеевско-максвеллового учения выступал в Петербургском университете профессор Иван Иванович Боргман. Студенту Попову не раз приходилось слушать на лекциях его горячие высказывания в пользу новейшей английской физики. Вдохновенно поблескивая стеклами толстых очков, Иван Иванович рассказывал им, недорослям в науке, о волновой природе света, рисовал на доске воображаемые силовые линии Фарадея, приводил уравнения Максвелла. Говорил о высоком значении новой теории, о ее математической красоте. И тотчас же, переходя на свой обычный саркастический тон, заключал:

— Читайте Фарадея, изучайте Максвелла! Может быть, и вас тогда коснется дух научного искания, просветив ваши нетронутые умы.

Читайте Фарадея!.. А ведь его действительно можно было прочитать. Здесь же, в Петербурге, недалеко от университета. Избранный почетным членом Петербургской Академии наук, Фарадей считал своим долгом присылать в дар Российской Академии свои печатные труды с собственноручной подписью. В Петербургской Академии хранились оттиски его знаменитых серий «Экспериментальные исследования по электричеству». И каждый, кто прикасался к этим листам под бдительным надзором академических библиотечных служителей, словно вступал во врата истинно большой науки, прослеживая ход гениальной мысли, переживая события, происходившие за столом непревзойденных фарадеевских экспериментов. Опыт за опытом, со всеми находками, неудачами и новым продвижением. Великая кухня открытий.

А кто сидит там, склонившись над этими листами? Худой и бледный. Не студент ли Александр Попов, всегда такой жадный до всякого знания? Попов несомненно бережно изучал все наследие Фарадея. Брал постепенно вершины Максвелловой теории.

Но теория оставалась пока только теорией. Оригинальной, красивой. За ее смелыми взглядами, за ее математическими значками предполагались реальные физические процессы, которые существуют не на бумаге, а в действительности. Должны существовать. И это напряженное поле силовых линий. И эти электрические колебания…

Так где же они, предсказанные волны? Сам Максвелл настолько верил своим формулам и уравнениям, что не нуждался ни в каких подтверждениях. Он не предпринимал никакой опытной проверки. Пусть, если хотят, этим занимаются другие.

А другие? Никто еще не знал, как к этому подступиться. Ушел из жизни Фарадей, до старости стоявший, как часовой науки, за своим лабораторным столом. Ушел Джемс Максвелл, настигнутый смертью во время своих вычислений, — его память почтили студенты в Петербурге на лекции профессора Боргмана минутой молчания. Но ничто еще не подтверждало, что предсказанные волны действительно существуют.

Самые передовые ученые посвящали им немало раздумий. Строили разные предположения, определяли условия, при которых могут возникнуть колебательные разряды, выводили на бумаге разные характеристики предполагаемых волн, украшали свои рассуждения математическими значками. А волн все-таки не было. Никто их еще не «держал в руках».

Берлинская Академия наук объявила даже конкурс на то, чтобы экспериментально подтвердить теорию Максвелла и существование электромагнитных волн. Но прошло почти десять лет, а никто не мог дать этого подтверждения. И вдруг…

13 декабря 1888 года молодой немецкий физик Генрих Герц, недавний ассистент Гельмгольца, а теперь профессор Высшей технической школы в Карлсруэ, выступил с сообщением: он получил электромагнитные волны. Получил и подверг их всевозможным исследованиям. Сам Гельмгольц, прочтя присланный ему манускрипт Герца, немедленно ответил: «Браво! В четверг передам в печать». Раскрылась новая страница науки — науки электрических колебаний.

Более двух лет охотился у себя в лаборатории Генрих Герц за электромагнитными волнами. И однажды, добыв их, уже более не отпускал, ловил и часами изо дня в день, тяжко кашляя и пытаясь время от времени согреться у железной печки, подвергал их всяческому экспериментальному анализу. Увеличивал, уменьшал, измерял, отражал, рассеивал, преломлял… Он гонял их по комнате лаборатории, как укротитель по манежу цирка. И новоиспеченные капризные волны действительно подчинялись его дрессировке.

Исходя из уравнений Максвелла, молодой Герц построил собственную теорию того, что должно быть излучателем электромагнитных волн. Токи высокого напряжения дали ему тот искровой разряд, ту искусственную маленькую молнию, которая сотрясала пространство прибоем электрических колебаний.

На его лабораторном столе громко трещала искрами индукционная катушка, заряжаемая от батареи гальванических элементов, — источник высокого напряжения. Катушка соединялась с тем, что, Собственно, и было главным изобретением Герца: его излучатель, в котором, как в центре сотрясений, рождались эти долгожданные волны и расходились в пространство. Потому он и дал ему название — вибратор.

Толстый металлический стержень. Стержень посредине разрезан, и на эти внутренние концы насажены металлические шарики. Между ними — небольшой воздушный промежуток. Внимание! В этом промежутке все и совершается. Все, ради чего затрачено столько теоретических расчетов и столько экспериментальной находчивости. Вибратор Герца. В общем-то, устройство как будто совсем незамысловатое, но вызвавшее в науке подлинный переворот.

Катушка работает. Ток, преобразованный в витках ее вторичной обмотки, достигает высокого напряжения, электризуя шарики вибратора все больше и больше. Напряжение растет до того, что воздушный промежуток между шариками уже не является препятствием. Голубовато-белые искры с резким треском проскакивают в промежутке. Происходит колебательный разряд. Сотни тысяч колебаний в секунду! Волны, электромагнитные волны разбегаются от вибратора. Куда? Теория Фарадея — Максвелла говорит, что во все стороны, на далекие расстояния, — ну, как лучи света. Только невидимо, незримо для нас. И теперь задача в том, чтобы их «увидеть».

Лучи света видит наш глаз. А что может служить глазом для электромагнитных волн? Что может ловить, различать эти электрические лучи? Как создать электрическое зрение?

Генрих Герц и создает такое новое зрение — «электрический глаз». Аналогия с музыкальными струнами помогает ему совершить это открытие. Давно было известно, что можно заставить на звуки одной струны отвечать другую, если обе их одинаково настроить. Тогда при колебаниях первой струны, едва в пространстве побегут звуковые волны, начнет дрожать и струна вторая, в том же тоне. Это явление резонанса Герц решил использовать и для своей цели — перенести его из области звука в область электричества. Заставить какое-нибудь устройство, чтобы оно, как резонатор, отзывалось на колебания электромагнитных волн.

Он берет металлический стержень, подобный тому, что в вибраторе, и сгибает его в виде дуги. Насаживает на оба конца по металлическому шарику. И резонатор готов. Герц помещает его на другом столе, против того, где работает катушка с вибратором.

Сдвигая или раздвигая шарики резонатора, он изменяет промежуток между ними и таким путем настраивает резонатор на любую электромагнитную волну. Если настроить на волну, которую излучает сейчас вибратор, то «чудо» произойдет. В ответ на каждую искру в вибраторе проскакивает искра и между шариками резонатора. Вот оно, чудо рождения и ловли электромагнитных волн! Волны, бегущие от вибратора по всем направлениям, наталкиваются на резонатор, заставляют его «звучать» в том же тоне, вызывая в нем такие же колебания, и маленькая искра возвещает: да, они действительно существуют, эти загадочные волны. Смотрите, смотрите на них с помощью «электрического глаза», который изобрел молодой физик в Карлсруз, бледный лицом, с щетинистой бородкой, словно небритый, снедаемый жаром открытия и чахоточной лихорадки.

Ему было нелегко с ней справиться, с этой искрой, единственно заявляющей о существовании волн. Она была полна капризов, эта искра. «То мы увидели, что искры усилились, — жаловался сам Герц. — Как тут же рядом они стали слабее, а рядом совсем исчезли». Весь успех опытов висел на тоненьком волоске. А явление надо было изучать, измерять, описывать. И выводить из этого твердые закономерности. Герц не жалел остатков своих сил. Он даже не думал об этом. Он делал то, что нужно, чтобы опыты и расчеты прошли удачно. Он научился даже по одному только виду искры и по характеру ее треска судить о состоянии своей аппаратуры.


Скачать книгу "Вторник. Седьмое мая: Рассказ об одном изобретении[3-е издание]" - Юрий Вебер бесплатно


100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Биографии и Мемуары » Вторник. Седьмое мая: Рассказ об одном изобретении[3-е издание]
Внимание