Вероятности и неприятности. Математика повседневной жизни

Сергей Самойленко
100
10
(1 голос)
0 0

Аннотация: Книга познакомит вас с повседневными приложениями теории вероятностей и математической статистики, мягко вводя в мир нешкольной математики. Лейтмотивом изложения станут широко известные «законы Мёрфи», или «законы подлости»,— несерьезные досадные закономерности, наблюдаемые каждый день, но имеющие, однако, объективное математическое обоснование. Кроме разнообразных примеров из области теории вероятностей, в книге немало говорится и о смежных разделах: теории мер, марковских цепях, стохастических процессах, теории очередей, динамическом хаосе ит.п. Эта книга подойдет и школьнику, которому не терпится попасть в университет, и студенту, недоумевающему: «Куда я попал?»,— и преподавателю, которому нужны оригинальные живые примеры, а также просто любопытному читателю, желающему развить навыки математического мышления, чтобы научиться отсеивать информационный шум и мусор в потоке новостей.

Книга добавлена:
16-02-2023, 12:39
0
543
72
Вероятности и неприятности. Математика повседневной жизни
Содержание

Читать книгу "Вероятности и неприятности. Математика повседневной жизни"



Счастье — это найти друзей с тем же диагнозом, что и у тебя

А можно ли вообще ставить вопрос о соответствии какой-то норме, не пытаемся ли мы при этом оценивать и сравнивать? Вы спросите: что же в этом плохого? Мы все время кого-нибудь с кем-нибудь сравниваем, чаще всего себя с другими, но иногда позволяем себе оценить и кого-нибудь еще. Однако с точки зрения математики все не так просто. Чтобы сравнивать что-либо с чем-либо, нужно правильно определить отношение порядка или ввести метрику.

Определить отношение порядка — значит обозначить, что один элемент некоего множества в каком-то смысле предшествует другому. Этому мы научились еще в школе: 2 меньше 20, слон слабее кита, уговор дороже денег и т. п. Но вот вам ряд вопросов. Что идет раньше — понедельник или вторник? А воскресенье или понедельник? А какое воскресенье — то, что перед понедельником, или то, которое после субботы? А какое комплексное число больше: 2 + 3i или 3 + 2i? Мы можем назвать по порядку цвета радуги и даже ассоциировать все промежуточные цвета с вещественным числом — частотой света. Но кроме этих цветов существует множество неспектральных. Они образуют хорошо знакомое типографам и дизайнерам цветовое пространство, в котором каждый цвет имеет три «координаты». Так можно ли все видимые глазом цвета выстроить по порядку?

Эти примеры показывают, что с отношением порядка бывают трудности. Например, для отношения «один день недели наступает после другого» не работает свойство транзитивности (из того, что воскресенье наступает позже четверга, а четверг — позже понедельника, не следует, что воскресенье всегда наступает позже понедельника), так же как не транзитивно отношение «сильнее» в игре «камень-ножницы-бумага». Попытка ввести понятие больше / меньше на поле комплексных чисел не согласуется с арифметикой этих чисел, а цвета, которые можно параметризовать тремя «координатами» (тон, насыщенность, яркость), обладают обоими этими недостатками: и отсутствием транзитивности для тона — своеобразной «угловой» характеристики цвета, которая зациклена подобно дням недели; и существенной многомерностью. Даже на привычном нам множестве рациональных чисел отношение порядка хоть и определено, но не дает возможности указать наименьшее или наибольшее число на каком-либо открытом интервале.

Итак, мы видим, что отношение порядка вовсе не так просто, как мы привыкли думать, а главное — не универсально. Но мы все-таки можем сравнивать людей, книги, блюда, языки программирования и прочие объекты, имеющие множество параметров, пусть даже условно формализуемых? Можем, используя вместо сравнения другую концепцию — степень подобия объектов между собой, или метрику. Фильмы про Индиану Джонса ближе к «Пиратам Карибского моря», чем к комедиям Вуди Аллена или документалистике. Русский язык ближе к польскому, чем к немецкому, и совсем не похож на суахили. Числа 2+3i или 3+2i ближе друг к другу, чем к числу 100. Если мера обобщает размеры (длину, объем и т. д.), то метрика, введенная в математику Морисом Фреше в 1906 году, — это обобщение понятия «расстояние». Вот ее определение.

Пусть имеется произвольное множество X. Метрика — функция ρ, сопоставляющая любым двум элементам x и y множества вещественное число ρ(x,y) и при этом удовлетворяющая таким условиям:

1) ρ(x,y) = 0 тогда и только тогда, когда x = y (аксиома тождества: расстояние между точками равно нулю, если эти точки совпадают);

2) ρ(x,y) = ρ(y,x) (аксиома симметрии: расстояние в обе стороны одинаково);

3) ρ(x,z) ≤ ρ(x,y) + ρ(y,z) (неравенство треугольника — аналог знакомого утверждения из курса геометрии: окружной путь не может быть короче прямого).

Множество X с введенной метрикой называется метрическим пространством. Из приведенных аксиом следует, что метрика — неотрицательная функция. Рассмотрим неравенство треугольника для случая x = z:

Понятие метрики позволяет вводить аналог расстояния (или степени близости) в совсем неочевидных случаях, например на бесконечномерном пространстве функций, между строками текста или изображениями; наконец, между распределениями случайных величин. Введение метрики не решает всех проблем, но в отсутствие внятной и корректной метрики легко увязнуть в бесконечном, бурном и бессмысленном споре, который в околокомпьютерной среде известен как «холивар» (от англ. holy war — священная война). Увы, жаркие споры возникают чаще всего уже на этапе выбора метрик, поскольку они сами образуют некое множество, на котором тоже нужно определять отношение порядка «лучше / хуже». Впрочем, можно предложить вполне осмысленный способ рассуждений о сравнимости многомерных объектов, например людей.

В многомерном пространстве параметров каждый объект может быть представлен вектором — набором чисел, определяющих значения критериев, которые его характеризуют. Рассматривая ансамбль векторов (например, человеческое общество), мы увидим, что какие-то из них окажутся сонаправлены или по крайней мере близки по направлениям; вот их-то уже вполне можно сравнивать по длине. В то же время какие-то векторы ортогональны (в геометрическом смысле — перпендикулярны, в более широком — независимы), и соответствующие им люди попросту друг другу непонятны: они по ряду параметров в сопряженных пространствах, как пресловутые физики и лирики. Нет смысла рассуждать о том, что хороший поэт в чем-то лучше либо хуже талантливого инженера или одаренного природой спортсмена. Единственное, о чём можно судить, — о длине вектора, то есть степени одаренности, расстоянии от среднего.

В связи с этим может возникнуть любопытный вопрос: а какая доля случайных векторов в пространстве заданной размерности будет сонаправленной, а какая ортогональной? Как много удастся найти единомышленников или хотя бы тех, с кем можно себя сравнить?

В двумерном мире каждому вектору соответствует одномерное пространство коллинеарных (сонаправленных) и одномерное пространство ортогональных векторов. Если мы рассмотрим «почти» сонаправленные и «почти» ортогональные векторы, то они образуют секторы одинаковой меры (неважно, площади или угла) при одинаковом выборе допустимого отклонения. Иначе говоря, похожих и непохожих объектов при рассмотрении двух критериев будет одинаковое количество (под количеством мы опять понимаем меру на множестве этих критериев, рис. 5.5).

В трехмерном мире картина поменяется. Сонаправленные векторы всё так же образуют одномерное пространство, а вот ортогональные уже заполняют плоскость, двумерное пространство. С точки зрения ортогональных векторов мера сонаправленных уже равна нулю, но все же позволим векторам немного отклониться от курса. Фиксируя их длину R и допуская небольшое отклонение от идеальных направлений на угол Δφ, можно количество почти сонаправленных векторов сопоставить с площадью круговых областей вокруг полюсов 2πR2Δφ2, а число почти ортогональных — с площадью полосы вокруг экватора: 4πR2Δφ. Их отношение 2/Δφ растет неограниченно при уменьшении отклонения Δφ.

В четырехмерном мире ортогональные векторы образуют уже трехмерное пространство, тогда как сонаправленные всё еще лежат в одномерном, и разница в их количестве растет уже пропорционально квадрату отклонения от идеала. Но на этом этапе лучше обратиться к теории вероятностей и выяснить, каковы шансы получить ортогональные или сонаправленные векторы, взяв наугад два вектора из пространства размерности m. Об этом нам расскажет распределение углов между случайными векторами (рис. 5.6). К счастью, рассуждая о площадях многомерных сфер, распределение можно вычислить аналитически и даже представить в конечной форме:

Здесь Γ(x) — гамма-функция, обобщение факториала на вещественные (и даже комплексные) числа. Ее основное свойство: Γ(x + 1) = xΓ(x).

Рис. 5.6. Распределения углов случайных векторов в пространствах различных размерностей

Для двумерного пространства углы распределяются равномерно, для трехмерного — пропорционально синусоидальной функции. Свойства синуса приводят к тому, что плотность вероятности в нуле для m>2 в точности равна нулю. Это согласуется с нашими рассуждениями о том, что сонаправленные векторы образуют множества нулевой меры. Для всех размерностей выше двух мода распределения приходится на 90°, и доля взаимно ортогональных векторов увеличивается по мере роста числа параметров. Самое же главное наблюдение — сонаправленных векторов (имеющих угол около 0° или 180°) практически не остается при достаточно высокой размерности пространства. Если считать более или менее похожими (сонаправленными, сравнимыми) векторы, имеющие угол менее 30°, то при сравнении по двум критериям похожей на какой-то выделенный вектор окажется треть всех случайных векторов, а при увеличении размерности пространства на единицу доля сравнимых векторов будет уменьшаться практически вдвое. Таким образом, мы приходим к векторной формулировке закона арбузной корки:

Или эквивалентно: на вкус и цвет товарищей нет.


Скачать книгу "Вероятности и неприятности. Математика повседневной жизни" - Сергей Самойленко бесплатно


100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Научно-популярная литература » Вероятности и неприятности. Математика повседневной жизни
Внимание