Вероятности и неприятности. Математика повседневной жизни

Сергей Самойленко
100
10
(1 голос)
0 0

Аннотация: Книга познакомит вас с повседневными приложениями теории вероятностей и математической статистики, мягко вводя в мир нешкольной математики. Лейтмотивом изложения станут широко известные «законы Мёрфи», или «законы подлости»,— несерьезные досадные закономерности, наблюдаемые каждый день, но имеющие, однако, объективное математическое обоснование. Кроме разнообразных примеров из области теории вероятностей, в книге немало говорится и о смежных разделах: теории мер, марковских цепях, стохастических процессах, теории очередей, динамическом хаосе ит.п. Эта книга подойдет и школьнику, которому не терпится попасть в университет, и студенту, недоумевающему: «Куда я попал?»,— и преподавателю, которому нужны оригинальные живые примеры, а также просто любопытному читателю, желающему развить навыки математического мышления, чтобы научиться отсеивать информационный шум и мусор в потоке новостей.

Книга добавлена:
16-02-2023, 12:39
0
543
72
Вероятности и неприятности. Математика повседневной жизни
Содержание

Читать книгу "Вероятности и неприятности. Математика повседневной жизни"



Теория для заскучавших в коридоре

Тем и хороша математика, что она способна сделать увлекательным даже стояние в очереди. Например, можно прикинуть, сколько еще ждать своей очереди, но для этого, как ни странно, надо посмотреть не вперед, а назад, на растущий хвост. Если подождать какое-то время, скажем 10 минут, и посчитать, сколько человек выстроилось за вами, то, разделив количество людей перед вами на полученное число, вы вычислите среднее время ожидания в десятках минут. Например, пусть за десять минут хвост вырос на пять человек; если в момент подсчета перед вами семь человек, то ожидаемое время ожидания составит 10 × 7/5 = 14 минут. Понятно, что эта оценка будет весьма грубой, но любопытно, что она действительно соответствует среднему времени ожидания. Об этом говорит теорема Литтла — один из самых ранних и самых общих результатов теории очередей, известной в России как теория массового обслуживания.

Теория очередей появилась в самом начале XX века, с первых работ датского математика Агнера Эрланга (1878–1929), который занимался зарождающейся областью телекоммуникаций. За сотню лет результаты исследований Эрланга прочно вошли в нашу жизнь — настолько, что возникает ощущение, будто мы вошли в мир телекоммуникаций. Несколько позже большой вклад в развитие этой науки внес советский математик Александр Яковлевич Хинчин (1894–1959), который вместе с Андреем Николаевичем Колмогоровым (1903–1987) заложил основы современной теории вероятностей. Результаты теории массового обслуживания важны для проектирования магазинов и залов ожидания, оптимального управления операционной системой компьютера и операционным залом банка, для грамотной разработки бюрократической машины, управления дорожной сетью и в оценке рисков страховой компании. В очередях могут стоять люди (покупатели, клиенты, пассажиры), автотранспорт и грузы, задачи и документы; а обрабатывать их — кассиры, операторы, регистраторы, серверы и бюрократы. Чтобы не путаться и не утопать в деталях, будем называть стоящих в очереди клиентами, а того, кто их обслуживает, — оператором.

Представьте себе очередь, в которую люди встают согласно некоторому распределению временных интервалов pin(t) со средним значением 1/λ. Время, которое оператор тратит на работу с клиентами, подчинено распределению pout(t) со средним значением 1/μ. На рисунке 7.3 показана очередь, в которой ожидают два клиента под номерами 1 и 2, один с номером 0 обслуживается, а клиент номер 3 готов в нее встать. Ее можно описать как марковский процесс, в котором состояние определяется длиной очереди: состояние 0 — в очереди никого, состояние 1 — один клиент, состояние 2 — два клиента и т. д. В идеальном мире ничто не запрещает очереди стать сколь угодно длинной; значит, мы получаем цепь с бесконечным числом состояний, и для анализа очереди придется иметь дело с матрицей переходов, содержащей бесконечное число строк и столбцов. В предыдущей главе мы уже имели дело с марковскими процессами, и для анализа стационарного состояния цепи нам понадобилось возводить матрицу переходов в бесконечную степень. Так что же, надо вычислить бесконечную матрицу, возведенную в бесконечную степень? Математиков эта задача не испугала, и уже в 1930-е были придуманы методы для таких вычислений. Результатом анализа будут свойства стационарного состояния очереди. Оно не меняется со временем, но все параметры очереди, такие как длина или время ожидания в ней, — случайные величины. Они могут постоянно меняться, но при этом всегда остаются в рамках каких-то распределений, от времени не зависящих. И чего только не придумаешь, скучая в зале ожидания!

Рис. 7.3. Модель очереди

Свойства очереди сильно зависят от соотношения λ и μ. Если λ > μ, хвост будет расти неограниченно, как пробка на дороге, в которую въезжает больше автомобилей, чем может выехать. Она попросту перекрывает поток клиентов, накапливая их в себе. Для λ < μ очередь устойчива. Она может расти или уменьшаться по мере того, как клиенты добавляются и выходят из нее, но клиенты в ней не накапливаются неограниченно: сколько их вошло в зону ожидания, столько же выйдет. Иными словами, устойчивая очередь может затормозить тех, кто в ней стоит, но неспособна изменить интенсивность потока людей, проходящих сквозь нее. И если на входе мы имеем в среднем λ человек в единицу времени, то и на выходе должны получить такой же поток, независимо от скорости работы оператора. Случай λ ≈ μ рассматривается отдельно. Такая метастабильная очередь ведет себя неустойчиво и моделируется процессом случайного блуждания — с той только разницей, что длина очереди не может быть отрицательной. У блуждающей таким образом системы есть непроницаемая стенка снизу, которая, однако, не мешает практически неограниченному росту длины очереди. И хотя рано или поздно она сократится и даже исчезнет, отклонения времени ожидания и времени работы оператора от среднего будут столь велики, что счесть такое обслуживание удовлетворительным никак не получится. Далее мы будем рассматривать только устойчивые очереди. От характера распределений pin(t) и pout(t) зависят динамика очереди и ее характеристики, такие как распределение для ее длины, времени ожидания клиентом и времени занятости оператора. Для очередей создана система обозначений, называемая нотацией Кендалла. Например, простая очередь, в которую люди входят равномерно и так же уходят, как, например, в аэропорту при посадке на рейс, обозначается D/D/1 (буква D здесь обозначает детерминированный процесс, соответствующий вырожденному распределению, а единица — одного оператора). Въезд и выезд автомашин на территорию аэропорта через три автоматических шлагбаума можно описать очередью M/D/3. Буквой M обозначается пуассоновский (марковский) процесс, то есть случайный процесс без памяти. В очередь на регистрацию билетов и оформление багажа новые люди приходят по-пуассоновски, и багаж у всех разный, так что клиенты будут выходить из очереди тоже по-пуассоновски. Для пяти стоек такая очередь обозначается M/M/5. Собственные обозначения существуют и для других видов распределений. Если же мы вообще ничего не знаем о распределении появления клиентов или методах их обслуживания, то обозначаем такой произвольный процесс буквой G (от слова General — общий).

В этой главе мы будем исследовать неприятности и неожиданности, наблюдаемые в очередях, на примере очереди с λ = 30 чел./ч и μ = 34 чел./ч. В среднем новые клиенты будут поступать в нее с интервалом в 2 минуты, а обрабатываться оператором примерно за 1 минуту 45 секунд. Это похоже на очередь у стойки регистрации в аэропорту. На рисунке 7.4 показан пример того, как могут «жить» M/D/1- и M/M/1-очереди с такими параметрами.

Рис. 7.4. Динамика M/D/1 и M/M/1 очередей. Более темным цветом выделены траектории каждого седьмого клиента в очереди. Длина очереди склонна к своеобразным колебаниям: она «дышит», то удлиняясь, то сокращаясь, оставаясь при этом в стационарном состоянии

В стационарном состоянии длина M/M/1-очереди n описывается геометрическим распределением:

Мы встречали его в предыдущей главе, рассматривая простейшую несимметричную марковскую цепь. Зная это распределение, можно вычислить ожидаемую длину .

Для нашего примера средняя длина очереди составит 7,5 человек. Время обслуживания клиента (сумма времени ожидания своей очереди и собственно времени работы с оператором) в M/M/1-очереди описывается экспоненциальным распределением с параметром μ − λ. Это приводит к значению среднего времени ожидания .

Среднее время работы с каждым клиентом не превышает 2 минут, однако среднее время ожидания для нашего примера равно 15 минутам. Как видно, для стационарной M/M/1-очереди выполняется равенство:

Это и есть формула Литтла, которой мы воспользовались, стоя в очереди и от нечего делать занявшись подсчетами. Будучи очень простой, формула на удивление сильна: она выполняется для очень широкого класса очередей и в самых разных задачах. То, что в формулу Литтла входит только λ, а не μ, отражает основное свойство стабильной (устойчивой) очереди: она может задерживать клиентов, но не меняет их поток, который определяется значением λ. И даже если скорость работы оператора μ будет очень велика, среднее время ожидания все равно определяется входным потоком и уже скопившимся числом клиентов. А поскольку для устойчивых очередей λ<μ, мы получаем еще один закон подлости:

Важная характеристика очереди — время занятости оператора, или длительность непрерывных периодов времени, в которые он обслуживает клиентов. Обозначим это время B. Периоды занятости перемежаются периодами простоя, когда по какой-то причине клиентов в очереди не оказывается. Клиенты приходят, ждут и уходят, а оператор остается работать, поэтому разумно предположить, что B>W. В действительности ожидаемое, среднее время занятости для M/M/1-очередей равно среднему времени ожидания, то есть B=W. Уже не вполне интуитивно понятный результат, но и это еще не всё: при той же интенсивности труда среднее время обслуживания клиента может стать существенно больше среднего времени работы оператора! Вот это уже кажется парадоксом. Получается, оператор в среднем умудряется работать меньше, чем в среднем обслуживается клиент!

Как мы уже говорили, средние значения надо использовать осторожно. Объяснить этот парадокс и понять, что происходит в очереди, можно, привлекая дисперсию распределения времени обслуживания одного клиента pout(t). Еще в 1930-е австрийскому математику Феликсу Поллачеку удалось в общем виде вычислить отношение W/B для произвольной M/G/1-очереди:

Здесь σ — дисперсия распределения pout(t). В случае M/M/1-очереди σ = 1/μ, и это отношение равно 1. Но может случиться, что при том же значении среднего распределение pout(t) будет иметь большую дисперсию, и тогда W окажется больше B. На рисунке 7.5 показан пример, в котором pin(t) распределено экспоненциально с λ = 30 чел./ч, а pout(t) описывается гамма-распределением, соответствующим интенсивности μ = 34 чел./ч с дисперсией σ = 2/μ.

Рис. 7.5. Распределения для периодов между появлением новых клиентов (сплошная линия — экспоненциальное распределение) и времени обслуживания одного клиента (пунктирная линия — гамма-распределение)

Очередь остается стабильной, поскольку λ < μ и клиенты в среднем обслуживаются быстрее, чем приходят новые. Оператор работает хорошо: большинство клиентов обслуживаются очень быстро; но обратите внимание на долю «трудных» клиентов, которые формируют достаточно толстый хвост распределения. Их мало, но каждый отнимает много времени, и все в очереди вынуждены их ждать. Для примера, приведенного на рисунке, среднее время ожидания оказалось равно 35 минутам, хотя среднее время занятости оператора прежнее (15 минут). Получается, что, не переставая работать, оператор в среднем филонит, пока мы страдаем в очереди от безделья!


Скачать книгу "Вероятности и неприятности. Математика повседневной жизни" - Сергей Самойленко бесплатно


100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Научно-популярная литература » Вероятности и неприятности. Математика повседневной жизни
Внимание