Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Джордан Элленберг
100
10
(1 голос)
1 0

Аннотация: Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.

Книга добавлена:
6-10-2023, 08:36
0
252
115
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Содержание

Читать книгу "Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального"



СМОТРИ!

Мы уже не заставляем школьников заучивать и повторять наизусть Евклида. В конце XIX века в учебники стали включать упражнения, в которых ученикам предлагалось строить собственные доказательства геометрических утверждений. В 1893 году эти перемены узаконил сформированный в 1892-м Комитет десяти, возглавляемый президентом Гарварда Чарльзом Элиотом. Комитету было поручено рационализировать и стандартизировать обучение в американских средних школах. По его утверждению, задача геометрии в школе – прививать ученикам навыки строгого дедуктивного мышления. Эта идея прижилась. В ходе опроса пятисот американских учителей об их задачах в преподавании геометрии, проведенного в 1950 году[46], самым популярным был ответ: «Развить навыки ясного мышления и точного выражения», который почти вдвое превысил вариант: «Дать знание фактов и принципов геометрии». Иными словами, мы здесь не для того, чтобы пичкать учеников всеми известными фактами о треугольниках, а для того, чтобы развивать в них умственную дисциплину, позволяющую добывать эти факты из первоначальных принципов. Школа для маленьких Линкольнов.

А для чего нужна эта умственная дисциплина? Может быть, на случай, если в какой-то момент будущей жизни им понадобится окончательно и неопровержимо доказать, что сумма внешних углов многоугольника равна 360 градусам? Я все жду, когда же это произойдет, но пока безрезультатно.

Основная причина обучения детей формулированию доказательств вовсе не в том, что мир полон доказательств, а в том, что мир полон недоказательств, и взрослым людям нужно знать разницу. Трудно согласиться с недоказательством, если вы реально знакомы с подлинником.

Линкольн понимал эту разницу. Его друг и коллега-юрист Генри Клей Уитни вспоминал: «Много раз я видел[47], как он срывает маску с заблуждения и стыдит как заблуждение, так и его автора». Мы постоянно встречаемся с недоказательствами, рядящимися в одежду доказательств, и без должного внимания с нашей стороны они часто обходят нашу защиту. Существуют подсказки, которые вы можете высматривать. Когда в математике какой-то автор начинает фразу со слов «Очевидно, что», на самом деле он говорит: «Мне это кажется очевидным. Вероятно, следовало бы это проверить, но я немного запутался в процессе и потому решил просто заявить, что это очевидно». У газетных аналитиков аналогичная фраза начинается со слов: «Конечно, все мы согласны с тем, что». Всякий раз, сталкиваясь с подобным, вы ни в коем случае не должны верить, что все согласны с дальнейшим. Вас просят трактовать нечто как аксиому, но если мы что-то и обязаны выучить из истории геометрии, так это то, что нельзя включать аксиому в свою книгу, пока она не доказала свою реальную ценность.

Всегда скептично относитесь к любому, кто говорит, что он «просто логичен». Если вам рассказывают не о равенстве треугольников, а об экономической политике, или о каком-то недостойно себя ведущем культурном деятеле, или об уступке, которую от вас хотят, то тут нет ничего «просто логичного», поскольку все происходит в контексте, где логические выводы – если они вообще применимы – неотделимы от всего остального. От вас хотят, чтобы вы ошибочно приняли цепочку уверенно выраженных мнений за доказательство. Но как только вы ощутите резкий щелчок настоящего доказательства, вы уже никогда не угодите в эту ловушку. Предложите своему «логичному» оппоненту заняться квадратурой круга.

По словам Уитни, Линкольн выделялся вовсе не сверхмощным интеллектом. Многие общественные деятели очень умны, но среди них есть и хорошие, и плохие люди, с сожалением отмечает Уитни. Линкольна же отличало то, что для него «было морально невозможно[48] спорить нечестно; он не мог этого делать по определению, как не мог красть; по сути, для него было одно и то же – лишить человека собственности путем кражи или путем нелогичных или отвратительных рассуждений». То, что Линкольн позаимствовал у Евклида (или то, что уже имелось у Линкольна и гармонировало с тем, что он нашел у Евклида), – это целостность: принцип, что нельзя говорить какие-то вещи, пока ты честно не обосновал свое право их обсуждать. Геометрия – это форма честности. Линкольна можно назвать Геометрическим Эйбом[49].

Единственное, в чем я расхожусь с Линкольном, – что он стыдит автора за заблуждения. Труднее всего быть честным с самим собой, и требуется гораздо больше времени и усилий на разоблачение собственных ошибок. Нужно всегда относиться к своим убеждениям, как к расшатанному зубу, то есть к зубу, в крепости которого вы не совсем уверены. И если что-то вызывает сомнения, не стоит стыдиться; просто спокойно отступите на твердую почву и заново переосмыслите проблемное понятие.

Именно этому в идеале должна научить нас геометрия. Однако «застывшая формалистика», на которую жаловался Сильвестр, от этого ой как далека. На практике урок геометрии, который мы преподаем детям, по словам художника, педагога и популяризатора математики Бена Орлина, обычно таков:

Доказательство – это непонятная демонстрация уже известного вам факта[50].

Орлин приводит пример такого доказательства для теоремы о равенстве прямых углов, то есть утверждения, что любые два прямых угла равны. Что можно спросить у девятиклассника, столкнувшегося с этим утверждением? Типичный формат[51] – доказательство в два столбца, главная опора геометрического образования в течение более чем ста лет. В нашем случае оно выглядело бы примерно так:

«Транзитивность равенства» – одно из общих понятий Евклида, это арифметический принцип, который он излагает в начале своего труда наряду с геометрическими аксиомами. Принцип таков: две вещи, равные третьей, равны между собой[52].

Не стану отрицать, что есть определенное удовлетворение в сведении всего к таким крошечным, точным шагам. Они так убедительно складываются вместе, словно детальки лего! И подобное ощущение учителю действительно хочется передать.

Но все же… разве не очевидно, что два прямых угла – это одна и та же вещь, просто расположенная на странице в разных местах с разной ориентацией? На самом деле Евклид считал равенство прямых углов четвертой из аксиом – основных правил игры, которые принимаются как истинные без доказательства и из которых вытекает все остальное. Так почему современная школа требует от учеников предъявлять доказательство этого факта, если даже Евклид сказал: «Да ладно, это очевидно»? Потому что существует много разных наборов аксиом, из которых можно вывести геометрию на плоскости, и поступать в точности так, как Евклид, больше не считается самым строгим или педагогически выигрышным приемом. В 1899 году Давид Гильберт переписал всю аксиоматику с нуля, а аксиомы современной американской школы обычно следуют системе Джорджа Биркгофа 1932 года.

Аксиома это или нет, но тот факт, что два прямых угла равны, ученик просто знает. Вы не можете винить школьников в том, что они разочаруются, когда вы им скажете: «Вы думали, что знаете это, но на самом деле не знали, пока не выполнили все шаги в доказательстве в два столбца». Даже несколько обидно!

Слишком многое на уроках геометрии посвящено доказательству очевидных вещей. Я хорошо помню занятия топологией на первом курсе колледжа. Профессор, весьма выдающийся почтенный ученый, потратил две недели на доказательство следующего факта: если вы проведете на плоскости замкнутую кривую без самопересечений, то, какой бы извилистой и причудливой она ни была, она разделит плоскость на две части: одна внутри, а вторая – снаружи кривой.

С одной стороны, как оказалось, весьма сложно написать формальное доказательство этого факта, известного как теорема Жордана о замкнутых кривых. С другой – эти две недели я провел в состоянии едва сдерживаемого раздражения. Неужели в этом и заключается математика? Делать очевидное трудоемким? Читатель, я просто отключался, так же как и мои однокурсники, среди которых были будущие математики и другие ученые. Парочка, сидевшая передо мной, – весьма серьезные студенты, которые впоследствии получат степени по математике в лучших университетах, – начинала энергично обниматься всякий раз, когда выдающийся почтенный ученый поворачивался к доске, чтобы записать очередной тонкий аргумент о небольшом видоизменении многоугольника. Я имею в виду, что они реально заводились, как будто их подростковая страсть друг к другу могла каким-то образом перенести их в другую часть континуума, где такого доказательства еще нет.

Столь высококвалифицированный математик, каким я стал сейчас, мог бы, слегка выпрямившись, сказать: «Ну, молодые люди, вы просто недостаточно искушены, чтобы понимать, какие утверждения действительно очевидны, а какие скрывают в себе тонкости». Возможно, я упомянул бы пугающую рогатую сферу Александера[53], которая показывает, что аналогичный вопрос в трехмерном пространстве вовсе не так прост, как можно подумать[54].

Однако с педагогической точки зрения такой ответ, на мой взгляд, довольно плох. Если в классе мы будем тратить время на доказательство вещей, которые кажутся очевидными, и настаивать на том, что они неочевидны, наши ученики будут кипеть от возмущения, как когда-то я, или найдут себе занятия поинтереснее, когда преподаватель отвернется.

Мне нравится, как мастер преподавания Бен Блюм-Смит описывает эту проблему: чтобы учащиеся действительно ощутили огонь математики, им надо испытать градиент уверенности[55], [56] – ощущение перехода от чего-то очевидного к чему-то неочевидному, подталкиваемое вверх двигателем формальной логики. В противном случае мы говорим: «Вот список аксиом, которые выглядят совершенно правильными; складывайте их, пока не получите другое утверждение, которое выглядит совершенно правильным». Это все равно что обучать кого-нибудь лего, показав, что из двух маленьких кирпичиков можно сделать один большой. Вы можете это сделать, а иногда вам действительно нужно это сделать, но суть лего, конечно, не в этом.

Вероятно, лучше самому почувствовать градиент уверенности, чем говорить о нем. Для этого подумайте на миг о прямоугольном треугольнике.

Начнем с интуитивного ощущения: если горизонтальная и вертикальная стороны определены, то известна и диагональ. Если вы пройдете 3 километра на юг, а потом 4 километра на восток, то однозначно удалитесь от исходной точки на какое-то конкретное расстояние.

Но на какое? Для этого нужна теорема Пифагора – первая реальная теорема геометрии. Она говорит, что если a и b – горизонтальная и вертикальная стороны прямоугольного треугольника, а c – диагональ (так называемая гипотенуза), то

a2 + b2 = c2.

Если a = 3, а b = 4, то c2 = 32 + 42 = 9 + 16 = 25. Мы знаем, какое число при возведении в квадрат дает 25: это число 5. Оно и есть длина гипотенузы.

Почему эта формула верна? Вы можете начать подниматься по градиенту уверенности, нарисовав треугольник со сторонами 3 и 4 и измерив его гипотенузу, она будет близкой к 5. Затем нарисуйте треугольник со сторонами 1 и 3 и измерьте его гипотенузу; если вы обращались с линейкой достаточно внимательно, то получите что-то близкое к числу 3,16, которое при возведении в квадрат дает 1 + 9 = 10. Благодаря этим примерам уверенность увеличится, но это еще не доказательство. А вот это уже оно:


Скачать книгу "Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального" - Джордан Элленберг бесплатно


100
10
Оцени книгу:
1 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Математика » Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Внимание