Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Джордан Элленберг
100
10
(1 голос)
1 0

Аннотация: Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.

Книга добавлена:
6-10-2023, 08:36
0
252
115
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Содержание

Читать книгу "Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального"



ЧЕРЕЗ МОСТ ОСЛОВ

Нам нужно знать, как решать геометрические задачи чисто формальными выводами, однако геометрия – это не просто последовательность чисто формальных выводов. Если бы это было так, то это был бы не лучший способ научить искусству систематических рассуждений в сравнении с тысячей других вещей. Мы могли бы объяснять шахматные задачи или судоку. Или создать систему аксиом, вообще не имеющую никакого отношения к какой-либо области человеческой деятельности, и заставлять учащихся выводить из нее следствия. Но вместо всего этого мы преподаем геометрию, поскольку она – формальная система, которая не просто формальная система. Она встроена в наши представления о пространстве, положении и движении. Мы не можем не быть геометрическими. Иными словами, у нас есть интуиция.

В эссе 1905 года геометр Анри Пуанкаре определил интуицию и логику как два незаменимых столпа математического мышления. Каждый математик склонен к той или иной стороне, и, как отмечает Пуанкаре, нам свойственно именовать геометрами тех, кто сильнее предрасположен к интуитивному мышлению. Нам нужны оба столпа. Без логики мы не могли бы ничего сказать о 1000-угольнике – объекте, который нам не представить ни в каком разумном смысле. Но без интуиции предмет теряет всю свою привлекательность. Пуанкаре объясняет, что Евклид – это мертвая губка:

Вы, несомненно, видели[60] те тонкие структуры кремниевых игл, которые формируют скелет некоторых губок. Когда органическая материя исчезает, остается только хрупкое и изящное кружево. Правда, там нет ничего, кроме оксида кремния, но интересна именно та форма, которую он принял, и мы не могли бы ее понять, если бы не знали живой губки, которая и придала ему такую форму. Именно так и старые интуитивные представления наших отцов – даже тогда, когда мы отказались от них, – все еще придают форму логическим построениям, которые пришли им на смену.

Каким-то образом нам нужно научить людей делать выводы, не отрицая наличия интуитивных способностей – той самой живой ткани губки. И все же мы не хотим, чтобы нами управляла исключительно интуиция. Здесь поучительна история постулата о параллельных. Евклид включил его в список аксиом: «Если дана прямая L и точка P вне ее, то через точку P можно провести одну и только одну прямую, параллельную прямой L»[61].

Это сложно и громоздко по сравнению с другими аксиомами, которые выглядят изящнее, например: «Через любые две точки можно провести прямую». Математикам казалось, что было бы лучше, если бы получилось вывести пятую аксиому из четырех других, которые считались более базовыми.

Но зачем? Ведь наша интуиция громко кричит, что пятая аксиома верна. Что может быть бесполезнее, чем пытаться это доказать? Это все равно что спрашивать, можем ли мы доказать, что 2 + 2 = 4. Мы это знаем!

И все же математики упорствовали, раз за разом безуспешно пытаясь показать, что пятая аксиома выводится из остальных. В итоге оказалось, что усилия изначально были обречены на неудачу, потому что существуют и другие геометрии, в которых прямая, точка и плоскость означают вовсе не то, что подразумевал под этими словами Евклид (и, вероятно, вы), однако они удовлетворяют первым четырем аксиомам, но не удовлетворяют пятой. В некоторых из этих геометрий через точку P проходило бесконечно много прямых, параллельных прямой L. В других не было ни одной такой прямой.

Нет ли тут обмана? Мы же не спрашиваем о каких-то геометрических сущностях других странных миров, которые извращенно называем прямыми. Мы говорим о настоящих прямых, для которых пятый постулат Евклида, безусловно, верен.

Да, конечно, вы можете пойти этим путем. Но, поступая таким образом, сознательно закроете себе доступ к целому миру геометрий просто потому, что это не та геометрия, к которой вы привыкли. Неевклидова геометрия – фундамент для обширных областей математики, включая и ту, что описывает физическое пространство, в котором мы реально живем. (Мы вернемся к этому вопросу через несколько страниц.) Мы могли бы отказаться открывать ее на основании своего жесткого евклидова пуризма. Но это была бы наша потеря.

Вот еще один пример, требующий нахождения баланса между формальной логикой и интуицией. Предположим, у нас есть равнобедренный треугольник, то есть его стороны AB и AC равны. Теорема: углы B и C тоже равны.

Это утверждение иногда называют pons asinorum, то есть мост ослов, потому что это штука, через которую почти всех нас нужно осторожно провести. Здесь доказательство Евклида поважнее, чем вышеописанная ситуация с прямыми углами. Мы сразу оказываемся in medias res[62], хотя в школе подходили к мосту ослов только после нескольких недель подготовки. Поэтому примем как данность Предложение 4 книги I Евклида, где говорится, что если вы знаете две стороны треугольника и угол между ними, то можете найти длину третьей стороны и два оставшихся угла. Иными словами, если я нарисую так:

то существует только один способ восстановить оставшуюся часть треугольника. Другой способ сказать то же самое: если у двух треугольников равны две пары сторон и углы между ними, то у них равны все углы и все стороны, то есть, как говорят геометры, треугольники равны, или конгруэнтны.

Мы уже обращались к этому факту, когда угол между двумя сторонами был прямым, но я думаю, что и в случае произвольного угла это кажется столь же понятным.

(Кстати, справедливо и следующее: если три стороны двух треугольников равны, то и треугольники равны; например, если длины сторон 3, 4 и 5 равны, то треугольник должен быть прямоугольным, как я нарисовал выше. Однако это менее очевидно, что Евклид и доказал несколько позднее: Предложение I.8. Если вам кажется, что это очевидно, подумайте о четырехугольнике: вспомните ромб, с которым мы недавно встречались, – у него такие же стороны, как у квадрата, но он же не квадрат.)

А теперь перейдем к pons asinorum. Доказательство в два столбца может выглядеть так:

[63]

Да, мы посреди доказательства, но у нас новая точка и новый отрезок AD, так что лучше обновить чертеж! Кстати, вспомните, что, по нашему предположению, треугольник равнобедренный, поэтому длина AB и AC одинакова; сейчас мы это используем.

QED[64].

Это доказательство посерьезнее, чем то, что мы видели, поскольку тут вам действительно приходится что-то делать: вы проводите новую линию L и придумываете название D для точки, где L пересекает BC. Это позволяет вам воспринять точки B и C как углы двух новых треугольников ABD и ABC, которые, как мы продемонстрируем далее, равны.

Однако существует и более хитрый способ, изложенный примерно через шестьсот лет после Евклида Паппом Александрийским, еще одним геометром из Северной Африки, в трактате Συναγωγή («Математическое собрание»). (Слово «синагога» означает «собрание», и в античном мире оно могло обозначать собрание математических предложений, а вовсе не собрание евреев на молитву.)

Погодите, что произошло? Казалось бы, мы ничего не делали, а нужное заключение появилось просто из ниоткуда, как кролик, выпрыгивающий при отсутствии шляпы. Это создает определенное беспокойство. Это не то, что понравилось бы Евклиду. Но так или иначе, на мой взгляд, это верное доказательство.

Ключ к идее Паппа – предпоследняя строка: треугольники BAC и CAB конгруэнтны. Кажется, что это просто утверждение о равенстве треугольника самому себе, которое выглядит тривиальным. Но присмотритесь более внимательно.

Что на самом деле мы имеем в виду, говоря, что два разных треугольника PQR и DEF конгруэнтны?

А вот что! Мы утверждаем сразу шесть вещей: длина PQ равна длине DE, длина PR равна длине DF, длина QR равна длине EF, угол P равен углу D, угол Q равен углу E, угол R равен углу F.

Конгруэнтен ли треугольник PQR треугольнику DFE? Нет, потому что на рисунке длина стороны PQ не равна длине соответствующей стороны DF.

Если мы серьезно воспринимаем определение конгруэнтности (а для нас, геометров, принимать определения всерьез – в некотором роде фирменная фишка), то треугольники DEF и DFE не конгруэнтны, несмотря на то что это один и тот же треугольник. Потому что DE и DF имеют разную длину.

Однако в нашем доказательстве с мостом ослов треугольник равнобедренный, а потому, когда мы воспринимаем его как треугольник BAC, он в точности тот же, что и в случае, когда мы его рассматриваем как треугольник CAB. Это не тривиальное утверждение. Если я говорю, что имя АННА читается одинаково в обоих направлениях, я в действительности сообщаю вам тот факт, что это палиндром. Возражать против самой концепции палиндрома, заявляя: «Ну конечно, это одно и то же, там две буквы А и две буквы Н, а порядок не важен», – чистое извращение.

На деле слово «палиндромный» было бы хорошим названием для треугольников типа BAC, который конгруэнтен треугольнику CAB, получаемому при записи вершин в обратном порядке. Именно благодаря такой идее Папп и сумел пройти через мост, не прибегая к дополнительным линиям и точкам.

И все же доказательство Паппа не вполне объясняет, почему равнобедренный треугольник имеет два равных угла. Представление о палиндромности равностороннего треугольника, то есть о том, что он остается таким же при записи вершин в обратном порядке, говорит вам то же, что (я уверен) и ваша интуиция: треугольник остается неизменным, когда вы берете его, переворачиваете и кладете обратно на то же место. Как и слово-палиндром, он обладает симметрией. Вот почему нам кажется, что углы должны быть равны.

На уроках геометрии нам обычно не разрешают говорить о переворачивании фигур[65], хотя делать это нужно. С какими бы абстракциями мы ни имели дело, математика – это то, чем мы занимаемся с помощью нашего тела. И прежде всего – геометрия. Иногда буквально: каждый математик обнаруживал, что рисует невидимые фигуры с помощью жестов, и как минимум одно исследование[66] показало, что дети, которым предлагали представить геометрическую задачу в движениях, чаще приходили к верному заключению[67]. Говорят, сам Пуанкаре в геометрических рассуждениях полагался на свое чувство движения. Он не был визуалом и плохо запоминал лица и фигуры, поэтому, когда ему требовалось[68] нарисовать картинку по памяти, он, по его словам, вспоминал не то, как она выглядела, а то, как по ней двигался его взгляд.


Скачать книгу "Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального" - Джордан Элленберг бесплатно


100
10
Оцени книгу:
1 0
Комментарии
Минимальная длина комментария - 7 знаков.
Книжка.орг » Математика » Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Внимание